Autonomous Navigation in Parking Lots using TD3 and Option-Critic

Aatmaj Amol Salunke, Mukesh Kumar Javvaji

{salunke.aa, javvaji.m} @northeastern.edu
Khoury College of Computer Sciences
Northeastern University
Boston, MA 02115 USA

Abstract

This project addresses the problem of autonomous car park-
ing, a critical task for autonomous vehicle systems. We pro-
pose a solution using advanced reinforcement learning (RL)
algorithms, specifically Twin Delayed Deep Deterministic
Policy Gradient (TD3) and Options Ceritic, to enable efficient
and accurate parking. A realistic parking lot environment was
designed in Unity, incorporating sensors and physics-based
interactions to simulate real-world conditions. The Unity
environment was connected to Python for training via the
ML-Agents library. The results demonstrate that advanced
RL algorithms significantly outperform entry-level methods,
achieving faster and more stable learning. Within just a few
episodes, the agent exhibited remarkable progress in parking
tasks, whereas simpler algorithms required up to ten times
more episodes to reach a comparable level of performance.

Introduction

Autonomous vehicles represent the future of transportation,
with parking being one of the most challenging and essential
tasks they must perform. Traditional rule-based or heuris-
tic approaches to parking often lack adaptability and fail
in dynamic environments. Reinforcement learning (RL) of-
fers a promising alternative by enabling agents to learn op-
timal strategies through trial and error in simulated environ-
ments. This project explores the application of state-of-the-
art RL algorithms, TD3 and Options Critic, to autonomous
car parking. These algorithms are designed to handle contin-
uous action spaces effectively, making them well-suited for
tasks involving precise control, such as parking.

To simulate the complexity of real-world parking, we de-
signed a realistic parking lot environment in Unity. This en-
vironment includes sensor data and physics-based object in-
teractions to provide an accurate representation of the chal-
lenges faced by autonomous vehicles in real-world scenar-
i0s. The Unity ML-Agents library was used to connect the
simulation to Python, facilitating the training of RL agents.
Our results demonstrate that advanced RL methods not only
accelerate the learning process but also achieve superior per-
formance compared to traditional approaches.

Copyright © 2025, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

Background

Reinforcement learning is a machine learning paradigm
where agents learn to make decisions by interacting with an
environment. Traditional RL algorithms like Q-learning and
SARSA have been successful in discrete action spaces but
struggle with continuous control problems due to scalability
and exploration challenges. Advanced algorithms like TD3
and Options Critic have been developed to address these is-
sues.

TD3 extends the Deep Deterministic Policy Gradient
(DDPG) algorithm by addressing overestimation bias and
improving policy stability. Options Critic leverages hierar-
chical RL by learning high-level “options” or macro-actions,
enabling agents to plan more efficiently in complex environ-
ments. These methods are particularly effective for tasks that
require precise control, such as autonomous parking.

The Unity ML-Agents toolkit bridges the gap between
Unity-based simulations and Python-based RL frameworks,
enabling researchers to train agents in highly realistic envi-
ronments. By combining Unity’s physics engine and ML-
Agents, this project creates a robust platform for testing RL
algorithms in a simulated parking lot.

Related Work

Prior research on autonomous parking has explored vari-
ous approaches, from traditional control theory to machine
learning techniques. Rule-based methods lack adaptability,
while supervised learning struggles with generalization.

Reinforcement learning offers a promising data-driven
approach. Earlier studies using Q-learning performed poorly
in continuous control tasks. Recent algorithms like DDPG
and PPO have limitations in convergence and overfitting.
Advanced algorithms such as TD3 and Options Critic have
improved policy stability and hierarchical planning.

The development of autonomous parking systems has
seen significant advancements through the application of
deep reinforcement learning (DRL) techniques, with many
studies focusing on enhancing performance, robustness, and
adaptability. Chan et al. [11] addressed the robustness of the
Twin-Delayed Deep Deterministic Policy Gradient (TD3)
algorithm, demonstrating that using the Huber Loss func-
tion achieves faster convergence and reduces Q-value over-
estimation, a key challenge in reinforcement learning. Sim-
ilarly, Yang et al. [12] highlighted TD3’s adaptability and

resilience in diverse parking scenarios, showcasing its su-
perior performance in complex environments with success
rates up to 0.93 when combined with convolutional neural
networks (CNNs).

The integration of advanced techniques has further im-
proved reinforcement learning applications in parking. For
example, Ertekin et al. [13] investigated the use of Hind-
sight Experience Replay (HER) to enhance the performance
of TD3, DDPG, and SAC algorithms, enabling precise steer-
ing and throttle control in parking tasks. Du et al. [15],
on the other hand, demonstrated that while both TD3 and
DDPG are effective for high-precision parking path plan-
ning, DDPG excels under controlled conditions, emphasiz-
ing the importance of algorithm selection for specific use
cases.

Innovative hybrid approaches have also emerged, such as
the work by Shi et al. [14], which combined Model Pre-
dictive Control (MPC) for trajectory tracking and Proximal
Policy Optimization (PPO) for reinforcement learning. This
method achieved significantly faster convergence and re-
duced training times compared to TD3 and DDPG, offering
a practical solution to the challenges of long training dura-
tions and slow convergence in trajectory planning.

Expanding beyond parking, Elsayed et al. [16] integrated
TD3 with sensor fusion using Nvidia CNNs for local path
planning, leveraging imitation learning to enhance safety
and rule adherence. This approach demonstrates the versatil-
ity of TD3 in broader autonomous vehicle navigation tasks.
Additionally, Soliman et al. [17] proposed a cooperative sys-
tem combining TD3 for Adaptive Cruise Control (ACC) and
DQN for Lane Keeping Assist (LKA), achieving effective
velocity control and lane centering, showcasing the potential
of multi-agent reinforcement learning in integrated systems.

These studies collectively underscore the versatility and
efficiency of TD3 in various autonomous driving applica-
tions. The insights from these works, particularly the fo-
cus on improving convergence rates, robustness in complex
environments, and hybrid methods, directly inform the de-
sign of our project, which aims to develop an autonomous
car parking system using TD3 in Unity. By leveraging find-
ings such as the effectiveness of Huber Loss [11] and the
adaptability of TD3 in complex scenarios [12], our approach
seeks to address key challenges in autonomous parking, en-
hancing precision and efficiency in real-world-like simula-
tions.

Project Description
Environment Design

A custom parking lot environment was created in Unity, fea-
turing realistic physics, sensor data, and environmental el-
ements like other parked vehicles and obstacles. The Unity
ML-Agents library was used to facilitate communication be-
tween Unity and Python, allowing the RL agents to train
within this simulation. The environment provides continu-
ous observations, including the car’s position, Torque, and
orientation.

Additionally, the vehicle is equipped with a ray percep-
tion sensor mounted on top, simulating a 360° LiDAR-like

sensor. This sensor emits n equally spaced rays within its
detection range, capable of identifying obstacles restricted
to 20 units away. Each ray returns a scalar value represent-
ing the distance to the nearest detected obstacle. These sen-
sor values allow the agent to perceive its surroundings and
make decisions accordingly, enabling it to navigate around
obstacles and parked vehicles within the parking lot.

The parking lot consists of 12 designated parking spots,
with one spot kept empty at random in each episode, man-
aged by a spawner script to simulate a dynamic environment.
Additionally, the car agent is spawned at a random position
and with a random orientation within a predefined area of
the environment. This setup enhances the learning process
by providing varied initial conditions for the agent, promot-
ing better generalization of its learned policies.

State, Action and Reward Representation

1. State Space
The state space S is a multidimensional space that
captures the agent’s perception and physical attributes.
At each time step t, the state s; € S is defined as:

St = [Tl,TQ,...,T'n,af,y7T797¢]

where

e r; (fori=1, 2, ..., n): Ray perception sensor float
values, representing distances to the nearest obstacles
detected by n sensors. These values are constrained to
the range:

r; €10.0,20.0], Vi€ {1,2,... .n}

* (X, y): The position coordinates of the agent in a 2D
plane, representing its location within the environ-
ment.

e 7: The torque applied to the agent’s motor or control
system, restricted to the range:

7 € [~30.0, 30.0]

¢ §: The orientation of the agent, represented as an
angle in degrees:

0 € [0,360°)

* ¢: The current steer angle of the agent, represented as
an angle in degrees:

¢ € [—20.0,20.0]

2. Action Space
The action space A is a continuous space that de-
fines the agent’s control inputs at each time step t. The
action a; € A is represented as a two-dimensional vector:

at = [T’ ¢]

3. Rewards

(a)

(b)

TD3

The reward structure for the RL agent in the au-
tonomous car parking environment is designed to
guide the agent towards desired behaviors while pe-
nalizing undesired actions.

* Distance-based Reward: The agent receives a small

reward for moving closer to its target, with a con-
trolling factor to prevent overshooting. A penalty is
applied if it moves away, encouraging a steady ap-
proach.

Alignment Reward: An alignment reward is based
on the angle between the agent’s forward direction
and its direction towards the target. A lower angle
earns a higher reward, guiding the agent to move
straight towards its goal.

Smooth Driving Reward: The agent receives a
slight reward for smooth driving behavior, specifi-
cally when the steering angle is minimal and throttle
is moderately applied. This promotes smoother turns
and efficient driving maneuvers, reducing unneces-
sary steering corrections.

Velocity and Stationary Behavior: A stationary
penalty is applied if the agent remains in one place
for too long. This incentivizes the agent to keep mov-
ing towards its goal rather than staying idle.
Obstacle and Ray Perception Rewards: The agent
receives a penalty for being too close to obstacles de-
tected by a 360° LiDAR-like sensor. The closer the
obstacle, the larger the penalty, encouraging effec-
tive navigation around obstacles. Penalty intensity in-
creases with proximity to obstacles like walls or other
cars.

Collision Penalties: Collisions with walls or other
cars result in a significant penalty, which is sustained
during the collision and slightly decreased if the colli-
sion continues. These penalties discourage collisions
and promote careful navigation around the environ-
ment.

This structured reward mechanism, combining posi-
tive rewards and penalties, guides the RL agent to-
wards efficient and safe navigation, leading to success-
ful parking behaviors within the custom parking lot en-
vironment.

Option-Critic

The reward structure in the Options Critic framework
is designed to encourage the agent to achieve sub
goals corresponding to each option. At each time step
t, the agent selects an option o € {01, 02, 03,04} and
a specific reward function R,,(s:,as,0;) is applied
based on the chosen option and the transition. The
reward design for each option is as follows:

* Option 1 - Encourages the agent to explore the envi-

ronment to find the Entrance of the Parking Lot:
— A penalty is applied when the agent remains station-
ary or applies zero torque, discouraging inactivity.

— A positive reward is given for applying positive
torque, incentivizing movement and exploration.

* Option 2 - Encourages the agent to move towards the
entrance:

— Reward is provided based on the agent’s Euclidean
distance to the entrance and its angular rotation to-
wards the entrance, encouraging both proximity and
proper orientation.

— A positive reward is given for applying positive
torque, promoting movement toward the entrance.

» Option 3 - Encourages the agent to explore the park-
ing lot to find an empty parking spot:

— A positive reward is given for movement, encourag-
ing the agent to explore the environment and search
for an empty parking spot.

— A penalty is applied for being stationary or applying
zero torque, discouraging inactivity and promoting
continuous exploration.

e Option 4 - Encourages the agent to park into the
empty spot.
— A positive reward is given for reducing the Eu-
clidean distance to the parking spot and aligning
the agent’s orientation with the parking spot.

Rewards Aggregation

At each time step, only one option is active, and
the corresponding reward is computed based on the
specific behavior associated with that option. The
reward for the active option is calculated by summing
the individual reward components for that option.

Only the reward from the active option is passed to
the agent at each time step, ensuring that the agent
receives feedback specific to the option it is executing.
This approach allows the agent to focus on optimizing
the behavior associated with the active option.

4. State Transition

The environment operates deterministically, meaning
that the next state is fully determined by the current state
and the action taken by the agent. At each time step, the
agent performs an action, and based on this action, the
environment transitions to the next state. The next state
s¢y1 1s represented by the observations collected at that
time step, which include the sensor readings, agent’s
position, torque, orientation, and steer angle.

St+1 = T(St, at)
where
* s; is the current state at time step t.
* ay is the action taken at time step t.

* T represents deterministic transition function.

Algorithms

Two RL algorithms, TD3 and Options Critic, were imple-
mented:

1. TD3

e Utilizes two Q-networks to reduce overestimation
bias.

* Incorporates delayed updates to the policy and target
networks for improved stability.

* Adds noise to target actions to promote exploration.
2. Options Critic

* Implements hierarchical RL by learning both high-
level options and low-level policies.

* Encourages temporal abstraction, allowing the agent
to execute complex maneuvers efficiently.

Architecture

1. TD3

The Twin Delayed Deep Deterministic Policy Gradient
(TD3) algorithm forms the backbone of the autonomous
parking agent’s control system. TD3 is an enhance-
ment of the Deep Deterministic Policy Gradient (DDPG)
method, addressing its limitations through a series of im-
provements: employing two Q-networks for more accu-
rate Q-value estimation, introducing a delayed policy up-
date to stabilize training, and incorporating noise in the
action space to encourage better exploration. These re-
finements make TD3 particularly well-suited for continu-
ous action spaces, such as those required for autonomous
parking.

The architectural components of the TD3 framework are
detailed below:

Actor Network The Actor network is responsible for
mapping the current state of the environment to continu-
ous throttle and steering commands. It is a feedforward
neural network with three fully connected layers:

* Input Layer: Accepts the state vector, consisting of
environment features such as the vehicle’s position,
orientation, velocities, and ray perception sensor data.

* Hidden Layers: Two fully connected layers with 400
and 300 neurons, respectively, each followed by a
ReLU activation function to introduce non-linearity.

e Output Layer: Produces a vector representing the
continuous actions (throttle and steering). The outputs
are passed through a tanh activation function to en-
sure that the actions are bounded within the specified
range. Scaling by max_action.T (maximum throt-
tle) and max_action_S (maximum steering angle)
maps the normalized outputs to real-world limits.

Critic Network The Critic networks evaluate the Q-
values for given state-action pairs, guiding the policy
learning. TD3 employs two Critic networks to mitigate
overestimation bias, with their predictions averaged dur-
ing policy updates. Each Critic network comprises:

e Input Layer: Combines the state vector and action
vector into a single tensor for processing.

* Hidden Layers: Two fully connected layers with 400
and 300 neurons, respectively, using ReL.U activations.

e Qutput Layer: A single neuron outputting the Q-
value estimate.

Target Network Updates To stabilize training, TD3
employs target networks for both the Actor and Critic.
These target networks are soft-updated periodically us-
ing a weighted average of the main network parameters,
controlled by the hyperparameter 7. This update mecha-
nism reduces training instability caused by rapid changes
in target values.

Algorithm 1: Target Network Update

Input: current network parameters 6, target network pa-
rameters 6, soft update parameter T

Output: updated target network parameters 6’

0 710+ (1—71)0

Return: 6’

Exploration Strategy TD3 introduces action noise for
effective exploration. Gaussian noise is added to the ac-
tor’s actions during training, promoting diverse experi-
ences in the replay buffer.

Algorithm 2: Action Noise Generation

Input: mean p, standard deviation o
Output: noisy action a’

noise ~ N'(u, o)

a' + a + noise

Return: o’

Policy Update (Delayed Actor Update) The Policy
Update mechanism in TD3 introduces a strategic delay in
updating the actor network relative to the critic networks.
This approach aims to stabilize the learning process by
reducing the frequency of updates to the actor policy, al-
lowing the critic networks to converge more accurately
before influencing the actor.

Algorithm 3: Policy Update (Delayed Actor Update)

Input: current actor parameters Oactors target actor param-
eters 0, critic parameters e, policy delay npolicy
Parameters: 0., Ocritic, Tpolicy
Output: updated actor parameters @y¢(o;
if current step number % npolicy == 0 then
Oactor — optimizer,, .step(Vo,...J (Ocritic, Oactor))
end if
Return: 0.

This architecture enabled the TD3 agent to exhibit robust
performance, demonstrating effective learning and con-
vergence in a complex autonomous parking environment.

The inclusion of dual Q-networks and noise-enhanced
exploration significantly improved the agent’s adaptabil-
ity and stability, making it highly suitable for real-world
deployment in autonomous vehicle systems.

. Option-Critic

The architecture of the Options Critic framework
consists of five key neural networks, each serving
a distinct purpose to enable the agent to effectively
choose, execute, and switch between options. These
networks include: the Policy over Options Network,
Intra-Option Policy Network, Termination Policy
Network, State-Option Function Network, and State-
Option-Action Function Network. Below is a detailed
explanation of the purpose and structure of each network:

* Policy Over Options:

This network learns the high-level policy that deter-
mines which option (temporally extended action) the
agent should select at each time step. This network
determines which option the agent should execute,
given a simplified set of input features. Unlike the
original implementation in the Option Critic Archi-
tecture, this design separates the input to the Policy
over Options network from the state input to other
networks, reducing model complexity.

Architecture:

— Input Layer: The input comprises of three boolean
values.
+ IsEntranceFound: Indicates whether the agent has
identified the entrance to the parking lot.
+ IsSpotFound: Indicates whether the agent has iden-
tified an empty parking spot.
* IsInsideTheLot: Indicates whether the agent is in-
side the parking lot.
— Hidden Layer: A hidden layer with 8 neurons and
ReL.U activation function.
— Output Layer: A softmax layer that outputs a
probability distribution over the available options.

Rationale for Design Change:

— This modification simplifies the decision-making
process at the level of option selection by excluding
unnecessary information such as ray perception val-
ues, torque, or orientation.

— The approach aligns with the observation that the
high-level decision of which option to choose de-
pends primarily on the agent’s current task (e.g., lo-
cating the entrance or finding a parking spot), not on
the detailed sensor values or control actions.

— Reducing the input dimensionality decreases com-
putational overhead and accelerates convergence
during training, while still enabling the agent to
make effective decisions.

 Intra-Option Policy:
This network learns the policy for each option,
determining the actions the agent should take while
executing that option.

Architecture:

— Input Layer: Takes the state and one-hot encoded
option as input.

— Hidden Layer: Two hidden layers with 64 and 16
neurons respectively.

— Output Layer: A tanH layer that outputs two values
representing torque and steer angle respectively.
These values are scaled to their respective ranges
before sending to the environment.

To encourage exploration during training, Gaussian
noise is added to the outputs of the intra-option
policy network.

¢ Termination Policy:
This network learns when an option should terminate.
It provides the termination probability for the selected
option, determining whether the agent should continue
or switch to another option.

Architecture:

— Input Layer: The input consists of the simplified
state representation as described in the policy over
options and the one-hot encoded option.

— Hidden Layer: One hidden layer of 16 neurons with
ReLU activation function.

— Output Layer: A sigmoid layer that outputs one
probability representing the likelihood of current
option being terminated.

 State-Option function(Qq):
This network estimates the value of each option in
a given state, representing the expected cumulative
return of selecting each option at a specific state. It is
used by the critic to evaluate options.

Architecture:

— Input Layer: The input consists of the simplified
state representation as described in policy over op-
tions and one hot encoded option.

— Hidden Layer: One hidden layer with 16 neurons
and ReLU activation function.

— Output Layer: A single scalar value representing
the Q-value of the current state and option pair.

« State-Option-Action function(Q)/):
This network estimates the expected cumulative return
for a specific option and action pair, allowing the critic
to guide the agent’s learning on how well each action
within an option contributes to long-term success.

Architecture:

— Input Layer: The input consists of the state, one hot
encoded option and the action.

— Hidden Layer: Two ReLU hidden layers with 128
and 64 neurons respectively.

— Output Layer: A single scalar value representing the
Q-value of the current state-option-action pair.

Environment Dynamics
 Episode Initialization:

— At the start of each episode, the agent is spawned at
a random position and orientation within the environ-
ment.

— The parking lot contains 12 parking spots, all of
which are randomly occupied except for one desig-
nated empty spot.

* Objective: The agent’s goal is to navigate to the parking
lot, locate the empty parking spot, and park within it as
efficiently as possible.

* Episode Termination: An episode ends when

— The agent successfully parks in the designated empty
spot.

— A maximum time step limit of 1500 is reached, result-
ing in a failure.

Training Process

The training process leverages the Unity ML-Agents
(ML-Agents) toolkit to facilitate communication between
the Unity simulation environment and the reinforcement
learning (RL) algorithms implemented in Python. The
training was conducted in a headless mode to optimize
computational resources, allowing the simulation to run
without rendering the environment visually.

* Action Selection:
Uses the current state to generate actions. The Actor pro-
cesses the state to produce continuous actions, which are
then scaled by their respective maximum values.

* Learning Rate:
A learning rate of 1 x 1073 is used for all networks in
TD3 and 1 x 1079 is used for all networks in Option-
Critic, allowing a good balance between convergence
speed and stability of the training process.

* Delayed Updates:

- TD3
The target networks are updated less frequently (ev-
ery 2 steps) to prevent the critics from following the
actor too closely, which can destabilize learning. This
practice encourages more exploration during training.
— Option-Critic
The policy over options, Intra-option policy and ter-
mination policy are updated less frequently than the
State-Option function and State-Option-Action func-
tion.

* Policy Noise and Clipping:
Added noise to the actions during exploration (policy

noise) helps the agent to explore more diverse actions
and avoid falling into local minima. The noise is clipped
to prevent it from becoming too large, which could
destabilize the learning process.

* Exploration Strategy:
To encourage exploration during training, action noise is
added to the policy’s actions:

ar = m(st) + N(p,0)

where N (u, o) represents Gaussian noise with mean p
and standard deviation o, enabling the agent to explore
the action space effectively.

* Loss and Gradient Flow:

— The back propagation process computes gradients for
all the network’s losses. These gradients are then used
to update the respective networks.

— For the critics, the gradient computation involves back
propagating the loss with respect to the Q-values.

Lciitic = % [(Q(s,a) —y)?]

— For the networks other than critics, the gradient is de-
rived from the Q-value’s negative gradient with respect
to the network’s parameters to ensure actions improve
the Q-values.

LACtor = _Es [mln Q/(S, al)]
* End of Training:

— The training process continues for a set number of
episodes. For each episode, the cumulative reward is
calculated and stored, giving insight into the agent’s
learning progress over time. The loss values of the
critic and actor, along with the rewards, are recorded
for analysis and plotting purposes, allowing the visu-
alization of learning curves and training stability.

— After completing the training, the learned network is
exported to .pt format. This format is useful for de-
ployment in other environments or for integrating with
other systems.

1. TD3

* Training Loop:
— The train method is invoked repeatedly during the
training phase:

x Sampling from Replay Buffer: A batch of expe-
riences (states, actions, rewards, next states, done
flags) is sampled from the replay buffer.

% Critic Loss Calculation:

- For each batch, noise is added to the actions of the
next states (policy_noise) to simulate exploration.
The noise is then clamped (noise_clip) to avoid ex-
treme deviations.

- The target actions are computed using the target
Actor network on the next states, combined with
the added noise.

- The targets (target.ql and target.q2) from the
critics are computed using these noisy ac-
tions and then combined (torch.min(target_ql,
target_q2)) to provide a single target Q-value.

- The target Q-value for updating the critics is cal-
culated using:

y=7r+(1—-d)xvyxmin(Q'(s,a))

where 7 is the reward, d is the done signal, + is the
discount factor, @’ is the target critic network, s’
is the next state, and a’ is the action sampled from
the target actor.

- The critic loss is computed using Mean Squared
Error (MSE) between the current Q-values
(current_ql and current_q2) and the computed tar-
get Q-values:

Target Networks Update:

- Every few steps (as defined by
target_update_interval), the target networks
(actor_target, critic_l_target, critic_2_target) are
updated using a soft update mechanism:

atarget — Tecurrent + (]- - T)gtarget

where O.yren are the current network parameters,
Ouarger are the target network parameters, and 7 is a
soft update parameter.

- This delayed policy update helps stabilize the
training process by updating the target networks
less frequently:

atr1 = m(st4+1) + N(p, 0)

where N (u, o) is noise sampled from a Gaussian
distribution added to the action a1, ensuring con-
tinuous exploration.

2. Option-Critic

* Policy Optimization:

— Policy Over Options
This policy determines which option to activate at a
given state, using observations described earlier. It is
trained to maximize the long-term discounted reward
by encouraging the selection of the most appropriate
option for the task.
— Intra-Option Policy:
This policy dictate the low-level actions (e.g., torque
and steering angle) to be executed under each op-
tion. They are trained using gradient-based methods
to maximize rewards within the option.
¢ Termination Optimization:
The termination policy learns when to terminate the
current option. It is trained using the advantage func-
tion, which captures the value difference between con-
tinuing with the current option and switching to a new
one.
* Value Function Training:

— he state-option function estimates the value of exe-
cuting an option in a given state.

— The state-option-action function estimates the value
of taking a specific action within an option.
— Both are optimized using Temporal Difference (TD)
error to improve value estimation accuracy over time.
* Loss Functions:
The loss calculations for policy optimization, termina-
tion optimization, and value function updates are de-
rived directly from the original Option-Ceritic architec-
ture. These losses ensure that all components of the
framework are jointly optimized.

This training methodology ensures that the agent learns
both high-level strategies (e.g., choosing the right option)
and low-level controls (e.g., precise maneuvering), en-
abling it to solve complex hierarchical tasks effectively.

Experiments

. TD3

In this section, we discuss two distinct approaches that
were employed to evaluate and compare the efficacy of
reinforcement learning (RL) for the autonomous parking
task using Twin Delayed Deep Deterministic Policy Gra-
dient (TD3) algorithm. Each approach utilized different
sets of observations and reward structures to control and
guide the agent towards its goal of parking autonomously
in a predefined environment.

Approach 1: Minimal Observations and
Heuristic-based Reward Shaping
For the first approach, the RL agent was provided with
a limited set of observations and no external guidance
other than the immediate feedback from its environment.
The observations consisted solely of:
* Agent’s Normalized Local Position (X-axis)
* Agent’s Normalized Local Position (Z-axis)
* Agent’s Normalized Yaw Angle
* Agent’s Normalized Speed
* Normalized Relative Position (X-component)
* Normalized Relative Position (Z-component)
* Normalized Relative Position Magnitude (Distance to
Parking Spot)
» Agent’s Forward Direction vector X-component
* Agent’s Forward Direction vector Z-component
With these inputs, the agent’s decisions were entirely
based on its local spatial perception and immediate
speed, steering angle, and relative position to the goal,
with no external cues to aid its navigation.
¢ Training Results:
— Actor Loss plot shows:
* High variance
* Erratic spikes
— Reward plot indicates:
Significant variance
x Difficulty accumulating consistent rewards
* Learning Progression:

Critic 1 Loss Critic 2 Loss

Frequent crashes into obstacles | [
Poor navigation towards parking spot)

Low parking success rate

Successful parking only in final training episodes

¢ Key Insight: Minimal observations and unstructured
reward mechanism severely hindered effective learn-
ing.

Figure 3: Critic 1 and 2 Losses

Plots:

Approach 2: Enhanced Observations with
Ray Perception and Targeted Reward Shaping

Actor Loss

—— Actor Loss

In the second approach, the agent was provided with
a significantly richer set of observations and a more
structured reward mechanism. A Ray Perception Sen-
sor was integrated into the vehicle, providing 50 ray-
based distance readings, simulating a 360° LiDAR-
like sensor that detected obstacles within the environ-
ment. In addition to the basic observations used in the
first approach, the agent also had access to:

Loss

Agent’s Normalized Local Position (X-axis)

Agent’s Normalized Local Position (Z-axis)

~15 4

Agent’s Normalized Yaw Angle

Agent’s Normalized Speed

Agent’s Normalized Steer Angle

Reward Structure:

T T T T T T T T
o 5000 10000 15000 20000 25000 30000 35000
Training Steps

* Penalties for proximity to obstacles

Figure 1: Actor Loss % Substantial reward for navigating to parking lot en-
trance and empty spot

— Training Results:

% Actor Loss plot showed smooth, consistent down-

Rewards Moving Average (Window=100)
ward trend

Bl e ¥ * Episode rewards plot demonstrated clear upward
os | trajectory

* Agent successfully learned to:

001 - Navigate to parking lot entrance
- Reach empty parking spot

- Avoid obstacles and parked vehicles

Average Reward
I
=]
n

10l — Learning Progression:

* Initial obstacle crashes were brief
151 % Quick adaptation to safer navigation routes

* Later training stages showed consistent successful
parking

—2.01

T T T T T T T T
0 10000 20000 30000 40000 50000 60000 70000

steps — Key Insight: Structured observations and well-
defined reward mechanism significantly improved

Figure 2: Average Rewards over episodes agent’s learning effectiveness

Plots:

Actor Loss

40 —— Actor Loss

30 4

204

_104
_204
_30
0 5000 10000 15000 20000 25000 30000 35000
Training Steps
Figure 4: Actor Loss
Rewards Moving Average (Window=100)
0.50 Rewards Moving Avg

—0.25

—0.50 1

Average Kewara

—0.75 1

-1.00

-1.25

0 2000 4000 6000 8000
Steps

Figure 5: Average Rewards over episodes

Comparative Analysis

A comparative analysis between the two approaches
reveals several key insights:

— Approach 1: It relied solely on local observations
and did not incorporate any form of heuristic or re-
ward shaping. The lack of guidance led to an unstable
and ineffective learning process, resulting in minimal
success in parking.

— Approach 2: By integrating Ray Perception Sensor
data and targeted reward shaping, the agent’s learn-
ing process became more structured. This approach

Figure 6: Critic 1 and 2 losses

allowed the agent to understand its environment bet-
ter, adapt to obstacles, and follow a more informed
path towards the parking spot. The inclusion of tar-
geted rewards significantly improved the agent’s suc-
cess rate in parking, making it far more effective than
the first approach.

— Failure Circumstance: Approach 1 failed con-
sistently throughout the majority of the training
episodes, with the agent often crashing into obsta-
cles and not learning to avoid them until the final
few episodes. Approach 2, while initially struggling
with navigation due to tight environments, quickly
adapted and succeeded in parking by focusing on
avoiding obstacles and aligning with the parking
spot. However, it occasionally faced challenges when
the agent got stuck in tight situations, highlighting a
need for more complex reward shaping and explo-
ration strategies to handle such edge cases effectively.

Limitations and Edge Cases

Despite the improved performance of the second ap-
proach, several limitations were observed:

— Partial Parking: In some instances, the agent would
only partially align with the parking spot, prema-
turely concluding the parking task.

— Navigational Constraints: The agent occasionally
encountered difficulties when trapped in tight spaces,
demonstrating limitations in complex navigational
scenarios.

¢ Option-Critic
The experiments aimed to assess the effectiveness of
different reward strategies in training the Option-Critic
architecture.

Approach 1: Aggregating Rewards

* Description:

- In the first approach, a single aggregated reward
signal was used, combining the feedback from the
policy over options, intra-option policy, and ter-
mination policy. This aggregated reward was in-
tended to guide the learning of all components of
the Option-Critic architecture simultaneously.

- The reward signal for the agent was computed
by summing the individual rewards from each
component at each time step. This approach aimed

to prOVide a uniﬁed feedback mechanism to the Policy Over Options Loss Function - Loss over timesteps
agent, simplifying the reward structure. o

—1000 +

+ Challenges:

- Exploding Gradients: § =20
The primary issue encountered during training
was the occurrence of exploding gradients. This
instability was seen when the gradients of the loss
functions became excessively large during back 4000 1
propagation, leading to unstable updates to the 5 2000 4000 6000 8000 10000
neural networks and preventing effective learning. Time steps

—3000 1

Figure 7: Policy Over Options - Loss over Time steps
- Difficulty in Back propagating:
Since all five networks were updated using the

same reward Signal, the gradients had to flow State Option Function - Loss over timesteps
through all of them simultaneously. This setup 500000 -

resulted in difficulty in learning the individual

functions of the Option-Ceritic architecture. Specif- o000

ically, the model could not effectively disentangle
the different learning signals required for each

300000 1

Loss.

network, leading to insufficient training for certain 200000 |
components.
100000 ' ‘
% Tl'ialS' o | [} .d“" ‘|

(I) 20600 40600 60600 BDC‘IOO 100600 120600
- Decreasing the Learning Rate: To mitigate the rmesers
gradient explosion, the learning rate was reduced,
hoping that smaller updates would prevent the gra-

dients from growing too large.

Figure 8: State-Option function - Loss over Time steps

- Gradient Clipping: Gradient chpplng was em- 1000 Intra Option Policy - Loss over timesteps
ployed to cap the maximum gradient size at a
certain threshold, thereby preventing the gradients 800
from becoming excessively large and causing
instability.

600 §

Loss.

% Result: 2009 |

- Despite these attempts, the exploding gradient ’ | - [
problem was not fully resolved. The aggregated re- 2001
ward was not sufficiently informative to guide each P TRPr e v o
of the networks effectively. Time Steps

- A single reward signal was not able to provide Figure 9: Intra-Option Policy - Loss over Time steps
enough information to train each component of the
model. Different components of the framework,
such as the termination policy and the intra-option
policy, required different types of feedback, and
the single reward signal could not effectively guide

— Approach 2: Multiple Rewards

+ Description:
- In the second approach, separate reward signals

th 11. .
ema were used for each component of the Option-
- The training became unstable, and the networks Critic framework. Specifically, the rewards were
failed to converge to an optimal solution. designed as follows:

- Policy Over Options: This component received a
reward signal based on how well it selected appro-
+ Plots: priate options for the agent at each time step.

- Intra-Option Policy: A separate reward was used
to guide the low-level control of the agent, specifi-
cally the torque and steering angle actions.

- Termination Policy: A third reward signal was as-
signed to train the termination policy, encouraging
the agent to determine the appropriate time to end
an option and transition to another action or option.

- This approach aimed to provide more precise and
targeted feedback to each component of the frame-
work, improving the training process’s overall sta-
bility and efficiency.

Challenges:

- Initially, there was concern that the additional re-
ward signals could increase the complexity of the
model, but this approach allowed for better control
over the individual learning processes of each neu-
ral network.

- The separation of rewards for each network miti-
gated the exploding gradient problem, as the gradi-
ent updates could now focus on specific tasks and
were less likely to become unstable when passing
through all the networks.

+ Result:

- This approach successfully resolved the explod-
ing gradient problem. With separate rewards, each
neural network could be trained independently, re-
ceiving feedback that was tailored to its specific
function.

- The individual rewards led to smoother and more
stable training. The networks were able to con-
verge more effectively, and the agent learned to
perform the task (e.g., parking in the empty spot)
more efficiently.

- The training process showed consistent improve-
ment in convergence rates and performance met-
rics, with the agent achieving better task comple-
tion over time.

+ Plots:

Policy Over Options Loss Function - Loss over timesteps

0.6 1

0.4 1

Loss

0.2 4

0.0 1

0 20000 40000 60000 80000 100000 120000
Time Steps

Figure 10: Policy Over Options - Loss over Time steps

Intra Option Pelicy - Loss over timesteps

Loss
w

[N)
N

-
s

T T T T T T
0 20000 40000 60000 80000 100000
Time Steps

Figure 11: Intra-Option Policy - Loss over Time steps

Termination Policy - Loss over timesteps

—0.02 1

—0.04

Loss

—0.06 1

—0.08

=0.10 +

0 20000 40000 60000 80000 100000
Time Steps

Figure 12: Termination Policy - Loss over Time steps

State Option Function - Loss over timesteps

0.175 1

0.150 {

0.125 4

0.100

ss

0.075 4

0.050 -

0.025

0.000 -

y T T T T T T T
0.0 0.2 0.4 0.6 0.8 10 12 14
Time Steps le6

Figure 13: State-Option Function - Loss over Time steps

State Option Action Function - Loss

T T T T T T T T
0.0 0.2 0.4 0.6 0.8 10 12 14
Time Steps le6

Figure 14: State-Option-Action Function - Loss over Time

— Comparative Analysis

In Approach 1, a single aggregated reward signal
was used, combining all components of the agent’s
actions. However, this approach had the issue of
providing insufficient feedback for the individual
networks, which hindered the learning process.
A key problem was the occurrence of exploding
gradients, which resulted in unstable training, despite
efforts to mitigate this by decreasing the learning rate
and clipping the gradients. This instability caused the
agent to struggle in completing the task effectively,
leading to poor convergence and oscillating loss
curves.

In contrast, Approach 2 used separate reward
signals for the policy over options, intra-option
policy, and termination policy. This strategy pro-
vided targeted feedback to each component, which
helped eliminate the gradient instability observed in
Approach 1. As a result, training was more stable,
with smoother loss reduction and faster convergence.
The agent demonstrated improved performance,
reliably completing the task by parking in the empty
spot, leading to higher task completion rates.

While Approach 1 was simpler in terms of re-
ward structure, it required additional steps to handle
the gradient instability, which increased training time
and complexity. Approach 2, although involving
more complex reward management, resulted in better
overall performance, with faster convergence and
more reliable behavior from the agent.

In conclusion, Approach 1 failed due to the in-
sufficient reward feedback and unstable gradients,
while Approach 2 proved to be successful, providing
better stability, convergence, and performance.

— Limitations:
+* Reward Shaping Complexity:
In Approach 2, where separate rewards are assigned

for different components (policy over options, intra-
option policy, and termination policy), the complex-
ity of designing and tuning these individual reward
signals increases. Care must be taken to balance
these rewards so that they guide the agent effectively
without introducing unintended biases.

x Scalability:
As the number of options or actions increases, Ap-
proach 2 may become harder to manage, especially
if more separate rewards are needed. This can lead
to greater computational overhead in terms of both
training time and memory usage, as each policy and
termination function may need to be computed in-
dependently.

x Task-Specific Generalization:
The reward structures in Approach 2 are designed
specifically for the parking lot environment. While
they work well in this context, they might not gen-
eralize well to other types of environments where
task-specific rewards are harder to define.

Comparative Analysis of TD3 and Options
Critic Approaches

TD3 and Options Critic offer distinct methods for
tackling reinforcement learning tasks, particularly
in environments like parking lot navigation, which
require sequential decision-making.

— Learning Strategy: TD3 directly optimizes poli-
cies using continuous action spaces. In Approach
1, TD3 struggles with minimal observations and
heuristic-based rewards, leading to high variance
and slow learning. Approach 2 improves learning
with enhanced observations and structured rewards,
resulting in smoother convergence. In contrast, Op-
tions Critic uses temporal abstraction with options
(high-level actions), allowing the agent to focus on
long-term goals, making it more effective for com-
plex tasks.

— Reward Mechanism: TD3 relies on immediate re-
wards, which in Approach 1 leads to sparse feed-
back and inconsistent training. Approach 2 im-
proves this with additional sensors and structured
rewards. Options Critic benefits from multiple re-
ward signals for different decision-making layers
(policy over options, intra-option, and termination),
leading to more stable learning and better perfor-
mance in complex environments.

— Training Efficiency: TD3 faces challenges like ex-
ploding gradients, especially with sparse reward sig-
nals, and requires careful tuning. Approach 1 suf-
fers from poor learning efficiency, while Approach
2 shows improved convergence. Options Critic is
more efficient in learning long-term tasks due to
its hierarchical structure, which allows the agent to
learn complex sequences more effectively.

— Exploration and Exploitation: TD3 explores via
noise in the action space, but struggles with sparse

observations in Approach 1. Approach 2 improves
exploration with richer inputs. Options Critic pro-
vides better exploration by using multiple policies
and temporal abstraction, enabling more efficient
handling of exploration-exploitation trade-offs.

— Generalization and Adaptability: TD3 requires
significant data and careful tuning to generalize
across tasks. Options Critic handles generalization
better due to its hierarchical task decomposition, en-
abling it to adapt more easily to changes in the en-
vironment.

Conclusion

The research on autonomous parking using rein-
forcement learning revealed critical insights into the
importance of observation design and reward mech-
anisms. By comparing two distinct approaches—one
with minimal observations and an unstructured reward
system, and another with enhanced ray perception and
targeted reward shaping—we demonstrated that the
complexity and specificity of the learning environment
significantly impact an agent’s ability to successfully
complete autonomous navigation tasks. The first ap-
proach, which relied solely on local observations without
external guidance, resulted in unstable learning, frequent
crashes, and minimal parking success. In contrast, the
second approach, which integrated a 360-degree ray
perception sensor and implemented a more nuanced
reward structure, enabled the agent to learn effective
navigation strategies, avoid obstacles, and consistently
park in designated spots.

Furthermore, our exploration of the Option-Critic ar-
chitecture highlighted the critical role of reward design
in machine learning. By initially using a single aggre-
gated reward signal, we encountered significant chal-
lenges such as exploding gradients and insufficient learn-
ing feedback across different network components. Tran-
sitioning to an approach with separate reward signals
for policy over options, intra-option policy, and termi-
nation policy proved transformative, leading to smoother
training, faster convergence, and more reliable agent per-
formance. While this method introduced increased com-
plexity in reward shaping and potential scalability chal-
lenges, it demonstrated the profound impact of carefully
designed reward mechanisms on reinforcement learning
outcomes. The project underscored the nuanced nature of
training autonomous systems, emphasizing that success
depends not just on the algorithm’s architecture, but on
the thoughtful construction of the learning environment
and reward signals.

GitHub Links

e TD3 Implementation: Autonomous Car Parking RL -
TD3

e Option-Critic Implementation: |Autonomous Car
Parking RL - Option-Critic

10.

11.

12.

References

. Takehara, R., Gonsalves, T. (2021, September). Au-

tonomous car parking system using deep reinforce-
ment learning. In 2021 2nd International Conference
on Innovative and Creative Information Technology
(ICITech) (pp. 85-89). IEEE.

. Maravall, D., Patricio, M. A., de Lope, J. (2003).

Automatic car parking: a reinforcement learning ap-
proach. In Computational Methods in Neural Model-
ing: 7th International Work-Conference on Artificial
and Natural Neural Networks, IWANN 2003 Mad,
Menorca, Spain, June 3-6, 2003 Proceedings, Part I
7 (pp. 214-221). Springer Berlin Heidelberg.

. Folkers, A., Rick, M., Biiskens, C. (2019, June).

Controlling an autonomous vehicle with deep rein-
forcement learning. In 2019 IEEE Intelligent Vehicles
Symposium (IV) (pp. 2025-2031). IEEE.

. Thunyapoo, B., Ratchadakorntham, C., Siricharoen,

P., Susutti, W. (2020, June). Self-parking car simula-
tion using reinforcement learning approach for mod-
erate complexity parking scenario. In 2020 17th in-
ternational conference on electrical engineering/elec-
tronics, computer, telecommunications and informa-
tion technology (ECTI-CON) (pp. 576-579). IEEE.

. Zhang, J., Chen, H., Song, S., Hu, F. (2020). Re-

inforcement learning-based motion planning for au-
tomatic parking system. IEEE Access, 8, 154485-
154501.

. Song, S., Chen, H., Sun, H., Liu, M. (2020). Data

efficient reinforcement learning for integrated lateral
planning and control in automated parking system.
Sensors, 20(24), 7297.

. Khalid, M., Wang, L., Wang, K., Aslam, N., Pan, C.,

Cao, Y. (2023). Deep reinforcement learning-based
long-range autonomous valet parking for smart cities.
Sustainable Cities and Society, 89, 104311.

. You, C., Lu,], Filev, D., Tsiotras, P. (2019). Ad-

vanced planning for autonomous vehicles using re-
inforcement learning and deep inverse reinforcement
learning. Robotics and Autonomous Systems, 114, 1-
18.

. Awaisi, K. S., Abbas, A., Khattak, H. A., Ahmad,

A., Ali, M., Khalid, A. (2023). Deep reinforcement
learning approach towards a smart parking architec-
ture. Cluster Computing, 26(1), 255-266.

Junzuo, L., Qiang, L. (2021, April). An automatic
parking model based on deep reinforcement learning.
In Journal of Physics: Conference Series (Vol. 1883,
No. 1, p. 012111). IOP Publishing.

Chan, K. H., Mustapha, A., Jubair, M. A. (2024).
Comparative Analysis of Loss Functions in TD3 for
Autonomous Parking. Journal of Soft Computing and
Data Mining, 5(1), 1-14.

Yang, Z., Tang, J., Cai, L. (2024, August). Multi-
scenario Automatic Parking Based on Deep Rein-
forcement Learning. In International Conference on

https://github.com/aatmaj28/Autonomous-Car-Parking-RL
https://github.com/aatmaj28/Autonomous-Car-Parking-RL
https://github.com/Mukeshjavvaji/Autonomous-Parking-using-Option-Critic
https://github.com/Mukeshjavvaji/Autonomous-Parking-using-Option-Critic

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

Traffic and Transportation Studies (pp. 481-488). Sin-
gapore: Springer Nature Singapore.

Ertekin, M., Onder Efe, M. (2021, October). Au-
tonomous Parking with Continuous Reinforcement
Learning. In The International Conference on Arti-
ficial Intelligence and Applied Mathematics in En-
gineering (pp. 25-37). Cham: Springer International
Publishing.

Shi, J., Li, K., Piao, C., Gao, J., Chen, L. (2023).
Model-Based predictive control and reinforcement
learning for planning vehicle-parking trajectories for
vertical parking spaces. Sensors, 23(16), 7124.

Du, M. (2022, October). Research on the parking
planning algorithm based on DDPG and TD3. In In-
ternational Conference on Cloud Computing, Per-
formance Computing, and Deep Learning (CCPCDL
2022) (Vol. 12287, pp. 130-136). SPIE.

Elsayed, M. A. M. (2024). Navigating the Rules: In-
tegrating TD3 and Sensor Fusion for Traffic-Aware
Autonomous Vehicle Path Planning.

Soliman, T. M., Elshenawy, A., Tantawy, H. (2024).
Adaptive Cruise Control with Lane Keeping Assist
Using Reinforcement Learning. Journal of Al-Azhar
University Engineering Sector, 19(73), 1349-1368.

Bacon, P. L., Harb, J., Precup, D. (2017, February).
The option-critic architecture. In Proceedings of the
AAAI conference on artificial intelligence (Vol. 31,
No. 1).

Pateria, S., Subagdja, B., Tan, A. H., Quek, C. (2021).
Hierarchical reinforcement learning: A comprehen-
sive survey. ACM Computing Surveys (CSUR),
54(5), 1-35.

Botvinick, M. M. (2012). Hierarchical reinforcement
learning and decision making. Current opinion in neu-
robiology, 22(6), 956-962.

Barto, A. G., Mahadevan, S. (2003). Recent advances
in hierarchical reinforcement learning. Discrete event
dynamic systems, 13, 341-379.

Dann, C., Mansour, Y., Mohri, M. (2023, July). Rein-
forcement learning can be more efficient with multi-
ple rewards. In International Conference on Machine
Learning (pp. 6948-6967). PMLR.

Shelton, C. (2000). Balancing multiple sources of re-
ward in reinforcement learning. Advances in Neural
Information Processing Systems, 13.

Agarwal, M., Aggarwal, V. (2023). Reinforcement
learning for joint optimization of multiple rewards.
Journal of Machine Learning Research, 24(49), 1-41.

	Introduction
	Background
	Related Work
	Environment Dynamics
	Plots:
	Plots:
	Comparative Analysis of TD3 and Options Critic Approaches

	Conclusion
	GitHub Links

