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Abstract—This project presents a multi-agent code develop-
ment system, where individual language agents specialize in
chain-of-thought reasoning, code generation, debugging, and
explanation. Modular design aims to improve code reliability,
clarity, and debuggability by allowing each agent to focus on
a specific cognitive task. To further refine these agents, the
system integrates Reinforcement Learning with Human Feedback
(RLHF) and Reinforcement Learning with AI Feedback (RLAIF).
A reward model specifically trained to evaluate generated code
is used alongside a PPO trainer to optimize the generator
agent based on feedback. Preliminary results suggest that this
architecture enables more accurate and interpretable outputs
compared to single-agent code generation, highlighting the po-
tential of specialization and feedback-driven fine-tuning in AI-
assisted programming.

Index Terms—Multi-agent systems, LLM, RLHF, RLAIF, Fine-
tuning, LangGraph, StreamLit, Code Generation

I. INTRODUCTION

Large language models have made impressive strides in
generating code, making them valuable tools for developers
and researchers. But most of these systems rely on a single
all-in-one model to handle everything, from understanding the
problem to writing and explaining the code. This one-size-
fits-all approach can present challenges, especially when it
comes to making the code reliable, easy to understand, and
free of errors. These issues become even more noticeable when
using smaller, more efficient models, which often trade off
performance for lower computational costs.

A. Problem Statement

Although large language models have demonstrated strong
capabilities in code generation, relying on a single model to
perform multiple complex tasks such as reasoning, coding,
debugging, and explaining can reduce both accuracy and
clarity. This challenge is even greater when using smaller,
lightweight models that lack the capacity to handle these tasks
effectively on their own.

The central problem this project aims to address is to check
if a collaborative system of smaller, specialized agents work
together to match or exceed the performance of a larger,
general-purpose language model in coding tasks.

This question is motivated by the growing need for modular,
compute-efficient AI systems that can produce reliable and
interpretable code, especially in resource-constrained environ-
ments.
Key challenges included:

• Designing coordination mechanisms between agents
(planner, chain of thought, developer, debugger, ex-
plainer)

• Integrating UI with the agentic workflow because of
compute requirements.

• Evaluating performance gains in terms of error detection,
code correctness, and explanation clarity

B. Summary of Approach

To address the limitations of monolithic code generation
systems, we developed a multi-agent framework where indi-
vidual agents are assigned specialized roles: Planner, Chain-
of-Thought (CoT), Developer, Debugger, and Explainer. Each
agent is implemented using a lightweight language model
optimized for its specific function. The agents communicate
through a controlled message-passing system implemented
using LangGraph, which supports modular task flows and
persistent memory states.
The development process involves the following.

• Using a Planner Agent to decompose high-level user
goals into actionable coding steps.

• Using a CoT agent to generate algorithmic steps to
address coding problems.

• The Developer Agent generates code snippets based on
each step.

• The Debugger Agent tests the code and flags logical or
syntactical issues.

• The Explainer Agent provides human-readable justifica-
tions for generated code or error fixes.

We used HuggingFace Qwen2.5 coder models for agent
tasks, choosing them for their balance between speed and task-
specific accuracy.
To address challenges:

• A LangGraph state machine system to create a workflow
for better coordination.

• Reward models for both RLHF and RLAIF are trained
to reflect preferences for correct, readable, and logically
structured code.

• Feedback loops improve performance over time by re-
inforcing desirable behavior and penalizing low-quality
output.

We hypothesize that combining modular agent design with
RLHF/RLAIF optimization will:



• Increase code accuracy and robustness
• Yield more interpretable outputs through agents fine-

tuned with human-like reward signals

C. Summary of Evaluation

Our multi-agent system worked noticeably better than a
typical single-model setup of a similar size. By giving each
agent a clear role—like planning, chain-of-thought, coding,
debugging, or explaining: we saw more organized workflows
and cleaner outputs.

The Debugger Agent helped catch and fix issues that were
harder to spot in a one-shot generation approach. The Ex-
plainer Agent made the outputs easier to understand, especially
when things went wrong. Training these agents with human
and AI feedback made a big difference. Responses felt more
thoughtful and aligned with what a developer might expect.

The system consistently produced more reliable code, found
bugs more effectively, and gave clearer explanations in prac-
tice.

II. BACKGROUND WORK

This project is inspired by and builds upon three significant
advancements in AI-driven code development: AMD’s Agent
Laboratory, AgentCoder, and the application of Reinforcement
Learning from AI Feedback (RLAIF) for code generation.

A. Agent Laboratory by AMD and Johns Hopkins University

AMD’s Agent Laboratory [2] is a pioneering framework that
emulates a virtual research team composed of specialized AI
agents. Each agent is assigned specific roles, such as literature
review, experimentation, and report compilation, mirroring the
functions of human researchers. The system’s core component,
MLE-Solver, autonomously generates machine learning code,
executes experiments, and iteratively refines outputs based on
task instructions and accumulated knowledge. This modular
approach has demonstrated efficiency and adaptability across
various computational environments, from personal laptops to
GPU clusters.

Our project adopts a similar multi-agent architecture tailored
for code development tasks. By assigning distinct respon-
sibilities like chain-of-thought reasoning, code generation,
debugging, and explanation to specialized agents, we aim
to enhance the reliability, interpretability, and efficiency of
code generation processes. This modular design facilitates tar-
geted optimization and scalability, aligning with the principles
demonstrated in the Agent Laboratory.

B. AgentCoder: Multi-Agent Code Generation

Another relevant work is AgentCoder [1], which proposes
a three-agent framework for collaborative code generation in-
volving a programmer, test designer, and test executor. Unlike
previous multi-agent systems such as MetaGPT or ChatDev,
AgentCoder optimizes agent interactions by reducing token
overhead and improving feedback quality. It introduces a
dedicated test designer agent that independently creates diverse
and objective test cases, avoiding bias from seeing the code,

and a test executor agent that runs tests in a local environment
to provide actionable feedback. The programmer agent then
iteratively refines the code based on this feedback.

Our system adopts and extends this idea by assigning
additional roles—such as a debugger and explainer agent,
along with incorporating RLHF and RLAIF to continually
improve model performance. This fusion allows for more
granular task specialization and optimizable agent behavior,
offering a novel direction beyond AgentCoder’s fixed pipeline.

C. Reinforcement Learning from AI Feedback (RLAIF) in
Code Generation

In the study ”Applying RLAIF for Code Generation with
API-usage in Lightweight LLMs” [3], the authors developed
a method to generate human-like evaluation scores for model-
generated code responses. This approach involved using a
larger language model (e.g., GPT-3.5) to assess the quality
of code outputs produced by smaller models. The evaluation
focused on several key criteria:

1) Syntax Correctness: Ensuring that the code adheres to
the correct syntax of the programming language.

2) Functional Correctness: Assessing whether the code
performs the intended task as described in the prompt.

3) Readability and Style: Evaluating the clarity, structure,
and adherence to coding standards.

The larger language model was prompted to provide a
numerical score reflecting the overall quality of each code
snippet, simulating a human evaluator’s judgment. These
scores were then used to train a reward model that guided
the fine-tuning of the smaller code generation models through
reinforcement learning. This methodology aimed to improve
the performance of lightweight models in generating accurate
and functional code.

In our system, we integrate RLAIF to train a specialized
reward model for the code generation agent. This model eval-
uates generated code based on predefined criteria, providing
feedback that informs the Proximal Policy Optimization (PPO)
training process. By leveraging AI-generated feedback, we aim
to refine the code generation capabilities of our agent, ensuring
higher accuracy and alignment with intended functionalities.

III. METHODS

Our system includes a Streamlit-based UI that allows users
to interact with the backend multi-agent system. The user
submits a natural language query through the UI, which is
then forwarded as a structured request to the agent framework.
We use Streamlit UI to capture inputs, display agent responses
and collect user feedback for RLHF.

The Multi-Agent System processes the request by passing
it through the Planner and other specialized agents. The final
response is sent back to the Streamlit UI and displayed to the
user as illustrated on Figure 1.

To improve the quality of responses from the multi-agent
system, we implemented fine-tuning of the language models,
structured the agent interactions using a LangGraph-based
workflow, and applied reinforcement learning from human



Fig. 1. Application Flow

feedback (RLHF) and reinforcement learning from AI feed-
back (RLAIF).

A. Fine-Tuning Agent Models

1) Fine-tuning Approach for Student Models: This research
employs a teacher-student knowledge transfer paradigm to
create specialized language models for a multi-agent program-
ming environment. The approach involves fine-tuning smaller,
more efficient Qwen2.5-0.5B models (students) to learn from
larger, more capable Qwen2.5-7B models (teachers). This
methodology enables the creation of specialized agents that
can collaborate effectively within a programming workflow
while maintaining computational efficiency.

Rather than training student models from scratch on raw
data, we leverage the capabilities of teacher models to generate
high-quality examples. This approach allows student models to
benefit from the reasoning and generation capabilities of larger
models while maintaining a significantly smaller parameter
count for deployment efficiency.

2) Model Architecture and Training Environment: We used
two separate Qwen base models for each of our teacher and
student model tasks.
Teacher Models:

• Qwen2.5-7b-Instruct (for chain of thought reasoning and
code explanations)

• Qwen2.5-Coder-7B-Instruct (for code generation and de-
bugging)

Student Models:
• Qwen2.5-0.5B-Instruct (for reasoning and explanations)
• Qwen2.5-Coder-0.5B-Instruct (for code generation and

debugging)
Training was conducted on NVIDIA A100-SXM4-80GB

GPUs using PyTorch 1.13.1 with CUDA 11.4. The implemen-
tation utilized the Transformers library (version 4.37.0) and
Accelerate (version 0.25.0) for efficient training.

3) Agent Specialization: Our system architecture consists
of four specialized student models, each trained for a distinct
phase of the programming workflow:

1) The Chain-of-Thought (CoT) Agent forms the entry
point to our system, generating algorithmic strategies
and problem-solving approaches. This agent translates
basic python coding problems into algorithmic strategies
for writing the code.

2) Following the reasoning phase, the Developer Agent
translates algorithmic strategies into executable Python

code. This agent consumes the output from the CoT
agent along with the original problem statement to pro-
duce working implementations that follow the specified
approach.

3) The Debugger Agent then analyzes and refines the
code produced by the Developer Agent, identifying and
fixing bugs, optimizing inefficient patterns, and ensuring
adherence to best practices. This agent contributes to
code quality and correctness without requiring human
intervention.

4) Finally, the Explainer Agent creates clear, concise
explanations of the code functionality. This agent trans-
lates technical implementations into accessible language,
making the code more understandable to users with
varying levels of programming expertise.

This pipeline architecture enables a complete programming
workflow from problem formulation to understandable solu-
tion, with each agent building upon the outputs of previous
stages.

4) Dataset Creation and Fine-Tuning Pipeline: The Mostly
Basic Python Problems (MBPP) dataset served as the foun-
dation for our training data. This dataset consists of 974
Python programming problems with associated test cases and
solutions.

Our dataset generation process followed an iterative ap-
proach. First, teacher models generated high-quality examples
for each problem in the training dataset. We utilized all
374 examples from the MBPP training set for the teacher
models to generate solutions, and reserved 50 test examples
for evaluation. This provided sufficient data for fine-tuning and
allowed testing generalization to new coding problems in the
test examples.

The data flow through our pipeline followed the logical
progression of the programming workflow:

1) The CoT teacher model generated algorithmic reasoning
for each problem

2) The Developer teacher model generated code implemen-
tations based on the problem and CoT output

3) The Debugger teacher model refined the code imple-
mentations

4) The Explainer teacher model created explanations of the
debugged code

This sequential generation created aligned datasets where
outputs from each stage became inputs for subsequent stages,
ensuring coherence throughout the pipeline.

To facilitate efficient model training, we implemented a
custom CodeCraftDataset class that handles prompt tem-
plate application, tokenization, and the creation of attention
masks and label masks. This scalable dataset class ensures
that models focus their learning on generating appropriate
outputs as training follows the fine-tuning pipeline, rather than
reproducing only based on MBPP input prompts.

5) Prompt Engineering: The success of our approach relied
heavily on carefully designed prompt templates tailored to
each agent’s specific role. These templates provided structured



guidance that created appropriate outputs from both teacher
and student models.

• For the CoT Agent, we developed a template that enforces
a systematic reasoning approach (Appendix A)

• The Developer Agent template leverages the CoT output
to guide implementation (Appendix B)

• The Debugger Agent template focuses on code refinement
without verbose explanations (Appendix C)

• The Explainer Agent template solicits clear, concise ex-
planations (Appendix D)

These templates establish clear expectations for model outputs,
ensuring consistency and quality throughout the pipeline. The
precise formatting requirements and constraints help produce
outputs that seamlessly integrate across agents.

6) Fine-tuning Configuration: The fine-tuning process uti-
lized the following hyperparameters:

TABLE I
FINE-TUNING CONFIGURATION PARAMETERS

Parameter Value
Learning Rate 2e-5
Batch Size 10
Number of Epochs 6
Warmup Steps ≈ 5% of training steps
Maximum Token Length 512 (150 for CoT Agent)
Generation Temperature 0.6-0.7
Optimizer AdamW
Scheduler OneCycleLR
Gradient clipping norm 1.0

7) Alternative Approaches Considered: During our re-
search, we also explored knowledge distillation via logits
matching as an alternative to direct fine-tuning. This approach
incolved training student models to match the output probabil-
ity distributions of teacher models rather than just their final
text outputs.

In theory, logits matching offers advantages for transferring
nuanced knowledge, as it allows the student to learn the
full uncertainty profile of the teacher model rather than just
the most likely tokens. However, our experiments with this
approach revealed several limitations in the context of our
multi-agent system.

First, logits matching required significantly more computa-
tional resources, as it necessitates storing and processing the
full logit distributions across the vocabulary for each token.
With vocabulary sizes of tens of thousands of tokens, this
becomes memory-intensive, particularly for longer sequences.

Second, we observed less consistent results across different
agent types. While logits matching showed promise for the
Developer agent, it performed less reliably for the CoT and
Explainer agents, which required english-only generation from
its multi-lingual vocabulary.

Third, the iterative pipeline architecture of our system
requires well-formed, discrete outputs that can be reliably
passed between agents. The probabilistic nature of logits-
based distillation sometimes produced outputs with structural
inconsistencies that impaired the overall pipeline function-
ality. Given these considerations, we determined that direct

fine-tuning on teacher-generated examples provided the most
effective balance between performance, resource efficiency,
and pipeline compatibility for our multi-agent programming
system.

B. Multi-Agent Workflow

Our system is structured as a modular multi-agent environ-
ment, with agents communicating and collaborating through a
well-defined flow controlled by a central Planner.

Fig. 2. LangGraph Workflow for the Multi Agent system

The core of our system is built as a modular multi-agent
workflow using LangGraph, which allows the flexible com-
position of agents with clear state transitions and feedback
loops. Each agent in the system serves a distinct reasoning,
development, debugging, and explanation which is powered
by fine-tuned versions of the Qwen2.5 models as mentioned
in the above section.

• Planner: Routes the user query by classifying its intent
(developer/debugger/explainer/planner). If the input falls
outside code-related tasks, it finalizes the conversation
with an informative response.

• CoT Agent: When triggered by the Planner, it breaks
down the problem into a step-by-step reasoning chain
before passing it to the Developer.

• Developer: Generates Python code based on either raw
user queries or structured reasoning output from the CoT
agent.

• Debugger: Analyzes the generated code for errors and
loops back fixes through the Planner.

• Explainer: Produces human-readable explanations to im-
prove interpretability and transparency.

Each agent runs independently but is linked via LangGraph
as mentioned in Figure 2, which manages the flow of in-
formation and agent transitions. The dotted arrows represent
optional or conditional paths, such as when the Planner routes
to Debugger only if a problem is detected.

C. Reinforcement Learning with Human and AI Feedback
(RLHF & RLAIF)

This project integrates both Reinforcement Learning with
AI Feedback (RLAIF) and Reinforcement Learning with Hu-
man Feedback (RLHF) to improve the behavior of multiple
language agents in the code development system. The follow-
ing subsections outline the construction of the reward model,



the feedback collection strategy, and the application of PPO
for fine-tuning the agents.

1) Reward Model Pretraining with RLAIF: To initiate
reward-based optimization, we applied RLAIF to train a
reward model for the code generator agent. Using prompts
from the MBPP dataset, responses were generated using
the Qwen/Qwen2.5-Coder-0.5B model. Each prompt-response
pair was evaluated using GPT-4o, which produced a score
out of 8 based on correctness, structure, and overall quality.
These scores were normalized to the range [0,1] and used
to train a regression-based reward model specific to code
generation. This RLAIF-based reward model serves as the
initial performance estimator for PPO-based training.

2) Feedback Collection (RLHF): Human feedback was
collected through a custom user interface, visualized in the
figures below, using two complementary mechanisms:

1) Scalar Feedback: Users were shown a single model-
generated response and asked to provide a thumbs up
or thumbs down, representing a binary evaluation of the
response quality (Figure 3).

Fig. 3. Streamlit UI for scalar feedback collection

2) Preference-Based Feedback: Users were presented with
two responses to the same prompt—one generated by the
Qwen2.5-Coder-7B-Instruct teacher model and the other
by our multi-agent system. They were asked to select the
preferred response. This comparative feedback provides
a strong signal for preference modeling (Figure 4).

All feedback data was stored in structured JSON format,
along with metadata identifying which agent produced each
response. This metadata is used to isolate agent-specific feed-
back during training.

3) Agent-Specific PPO Fine-Tuning: Once a sufficient
amount of feedback was collected, the PPO (Proximal Policy
Optimization) algorithm was used to fine-tune the agents. The
planner agent plays a critical role in tracking which response
came from which agent. During training, this traceability
ensures that only the agent associated with the response is
updated using PPO, preserving the integrity of the other
agents. Figure 5 illustrates the RLHF loop.

Fig. 4. Streamlit UI for preference based feedback collection

While the PPO fine-tuning framework is generalized across
all agents, only the code generation agent currently bene-
fits from a pretrained reward model derived from RLAIF.
The reward models for other agents (developer, debugger,
explainer, and chain-of-thought) can be trained in a similar
fashion using the same pipeline. This modular and selective
training approach ensures that feedback leads to targeted im-
provement without introducing unnecessary parameter updates
in unrelated components.

Fig. 5. RLHF Loop

IV. EXPERIMENTS AND EVALUATION

To evaluate the performance and usability of our multi-
agent code development system and RLHF integration, we
conducted a small-scale user study. The aim was to collect
human feedback on model-generated code responses for train-
ing reward models and assessing model preference. While the
current study was conducted with a limited number of users,
it provides a proof-of-concept for the feedback loop and offers
insight into future experimental design.

A. Experiment Design and Task Description

Participants were asked to evaluate code responses gener-
ated by the system through two types of tasks:

1) Scalar Feedback Task: Subjects were shown a single
prompt and its corresponding code output and asked to
provide a thumbs up or down based on their judgment
of its correctness and quality.

2) Preference-Based Task: Subjects were presented with
two responses to the same prompt—one generated by



the Qwen2.5-Coder-7B-Instruct teacher model and the
other by our multi-agent system—and asked to choose
which response they preferred.

Both interfaces were deployed using Streamlit, a Python-
based web application framework, enabling accessible and in-
teractive feedback collection in a browser-based environment.

B. Participant Interaction and Data Recording

Initial feedback was collected from two graduate students in
the Artificial Intelligence program at Northeastern University.
These participants were familiar with code evaluation tasks
and thus capable of providing meaningful feedback. In an ideal
scenario, this experiment would be scaled to include a broader
sample of 20–30 users from varied technical backgrounds,
such as CS majors and practicing developers, to enhance
feedback diversity and generalizability.

All interactions were logged in structured JSON format,
including the prompt, response(s), user choice, and metadata
about the generating agent. This data was later used to train
the reward models and fine-tune the respective agents.

C. Instruments and Evaluation Metrics

The evaluation used two custom-built feedback tools imple-
mented in Streamlit: one for scalar ratings and one for pairwise
preference selection. These interfaces were designed for low
cognitive overhead and rapid feedback collection.

In addition to qualitative feedback, future iterations of the
experiment may incorporate quantitative usability measures
such as the System Usability Scale (SUS) or NASA-TLX,
as well as objective metrics like task success rate, pass@1,
and execution correctness to better quantify improvements in
model performance.

D. Preliminary Results and Observations

Although the evaluation was conducted with only a small
number of participants, early observations indicate that the
responses generated by the multi-agent system are on par
with those from the much larger Qwen2.5-Coder-7B-Instruct
model. Users expressed satisfaction with the overall quality
and clarity of the responses, particularly in tasks involving
code generation.

A notable finding is the impact of the chain-of-thought
agent, which significantly enhanced the output quality of
the code generator, despite having far fewer parameters. By
explicitly structuring the thought process before generation,
this agent helped the generator model produce more coherent
and task-aligned code. Figures 6 and 7 illustrates the responses
generated by the Qwen 0.5B model and our Multi Agent
System.

These results suggest that modular specialization, when
combined with targeted reward optimization, can empower
smaller agents to deliver high-quality responses comparable to
much larger models. Further studies with a broader participant
base will be conducted to validate these findings and support
more extensive analysis.

Fig. 6. Response generated by the Qwen 0.5B model

Fig. 7. Response generated by the Multi Agent System

V. ANALYSIS AND DISCUSSION

A. Performance Analysis of Fine-tuned Agents

This section examines the performance improvements ob-
served in our fine-tuned agents compared to their pretrained
counterparts. We analyze outputs from each specialized agent
in the pipeline to assess the effectiveness of our fine-tuning
approach.

1) Chain-of-Thought (CoT) Agent: The CoT agent trans-
lates natural language problem statements into structured
algorithmic strategies. Comparing outputs from pretrained
and fine-tuned models reveals significant improvements in
adherence to the desired format and reduction of redundant
information.

For the problem “Write a function to find whether a
given array of integers contains any duplicate element,” both
pretrained and fine-tuned models correctly identified a hash
table-based approach. However, the pretrained model exhibited
a tendency toward repetition, particularly in points 4-7 of its
output:

4. Edge cases: An array of integers; return
True if duplicates are found, False
otherwise

5. Complexity: O(n) time, where n is the
length of the array

6. Conclusion: A list of integers; return
True if any element appears more than
once, False otherwise

7. Note: Use a hash

Points 4 and 6 essentially restate the same information with
slight rephrasing, while point 7 appears incomplete and repeats
the desired data structure. This redundancy and formatting
inconsistency were common patterns in the pretrained model’s
outputs.

The fine-tuned model, while maintaining the core approach,
demonstrated more concise and structured reasoning. Through
exposure to teacher-generated examples, it learned to eliminate



redundant information and maintain consistent formatting.
This improvement is particularly valuable in the CoT agent,
as cleaner reasoning structures provide better guidance for
downstream agents in the pipeline.

2) Coder Agent: Our analysis of the Coder agent revealed
two significant improvements through fine-tuning. First, the
pretrained student model frequently failed to generate any
code for programming problems, instead producing explana-
tions or pseudo-code that lacked implementation details. After
fine-tuning on teacher-generated examples that consistently
included complete code implementations, the student model
more reliably produced executable Python code for the given
problems.

For the duplicate detection problem, both pretrained and
fine-tuned models generated similar, correct implementations:

def has_duplicate(arr):
seen = {}
for num in arr:

if num in seen:
return True

seen[num] = True
return False

However, the consistency of code generation improved
dramatically across the test suite. The pretrained model would
occasionally omit critical implementation details or produce
non-executable pseudo-code, particularly for more complex
problems. The fine-tuned model, by contrast, consistently
generated complete, executable implementations. However,
both failed to produce solution code if the coding problem had
an element that the models did not understand (i.e. ”Write a
function to get a lucid number smaller than or equal to n.”
where the teacher model does not know what a lucid number
is).

Additionally, by prompting the Coder agent with the struc-
tured reasoning from the CoT agent, we observed improved
alignment between algorithmic strategy and implementation.
This integration demonstrably helped the Coder agent follow
the (an often optimized) specified approach rather than default-
ing to alternative implementations, particularly for problems
with multiple possible solutions.

3) Debugger Agent: The Debugger agent showed per-
haps the most dramatic improvement through fine-tuning.
The pretrained model exhibited a strong tendency to leave
code unchanged, even when presented with implementations
containing obvious bugs or inefficiencies. This conservative
behavior limited its utility in a practical programming pipeline.

After fine-tuning on teacher-generated examples that
demonstrated appropriate code refinements, the student model
became significantly more effective at identifying and fixing
issues. For the duplicate detection problem, both pretrained
and fine-tuned models recognized that the implementation was
already correct and efficient, but for problems with actual bugs,
the difference was substantial.

4) Explainer Agent: The Explainer agent’s performance
showed notable refinement through fine-tuning. For the dupli-

cate detection problem, both pretrained and fine-tuned models
provided explanations that covered the core functionality.
However, the fine-tuned model demonstrated superior orga-
nization, clarity, and technical insight.

The pretrained model’s explanation was serviceable but
somewhat generic:

The provided Python function has_duplicate
is designed to determine whether an input array
contains at least one duplicate number. It does so
by utilizing a dictionary called seen. Each time a
new number is encountered, it checks whether that
number already exists within the dictionary’s keys.
If such a key is found, the function returns True,
indicating that duplicates are present. Otherwise, if
no duplicates are found after processing all numbers,
the function concludes that there are no duplicates
and returns False.

While accurate, this explanation lacks technical depth re-
garding the algorithm’s efficiency or insight into why this
approach is effective.

The fine-tuned model’s explanation, by contrast, offered
greater technical insight:

This Python function checks if there are any du-
plicate numbers in an input list. It uses a simple
hash table (seen) to keep track of numbers we’ve
seen before. As we go through the list, we check
if each number is already in our seen dictionary.
If so, then we know there’s a duplicate and we
return True immediately. If not, we add the number
to the seen dictionary. If no duplicates were found
after checking the entire list, we return False. The
key insight is that dictionaries provide average O(1)
time complexity for lookups and insertions, so this
approach runs very efficiently even for large lists.

The fine-tuned explanation highlights the O(1) lookup com-
plexity advantage of dictionaries and explains why this makes
the approach efficient, providing valuable context beyond
merely describing what the code does. This type of insight
helps users understand not just the implementation but the
algorithmic principles behind it.

B. Cross-Agent Integration Analysis

Beyond individual agent improvements, our analysis re-
vealed significant benefits from the integrated pipeline ap-
proach. The sequential flow of information—from reasoning
to code generation to debugging to explanation—created a
coherent programming experience with each agent building
upon the work of its predecessors.

We observed that the quality of upstream agents had direct
effects on downstream performance. For example, when the
CoT agent provided clear, structured reasoning, the Coder
agent produced more accurate implementations. Similarly,
well-structured code from the Coder agent enabled more
focused debugging and clearer explanations from subsequent
agents.



This interdependence highlights the importance of our
pipeline-aware fine-tuning approach, where each agent was
trained to work with the outputs of previous agents rather than
in isolation. The resulting synergy produces a programming
experience that exceeds the capabilities of any individual
component.

VI. CONCLUSION

In this project, we developed and implemented a multi-
agent code development system consisting of specialized lan-
guage agents for chain-of-thought reasoning, code generation,
debugging, and explanation. To enhance these agents, we
integrated a reinforcement learning pipeline using both human
and AI-generated feedback (RLHF and RLAIF). A reward
model trained using scores from GPT-4o served as the basis
for optimizing the code generation agent via PPO. Feedback
collection interfaces were built using Streamlit, allowing users
to provide both scalar and preference-based feedback in an
accessible format.

Preliminary evaluation, conducted with graduate students
in AI, revealed that the multi-agent system performs compa-
rably to the much larger Qwen2.5-Coder-7B-Instruct model.
Notably, the chain-of-thought agent substantially improved
the generator’s output quality, despite its significantly smaller
parameter size. These results demonstrate the potential of mod-
ular, feedback-driven agent architectures to match or exceed
the performance of large monolithic models while maintaining
efficiency and interpretability.

A. Future Work

• Feature-based Distillation: Explore using internal repre-
sentations instead of output text for model distillation to
retain deeper task-specific knowledge.

• Multi-Agent Architectures: Experiment with more com-
plex communication strategies between agents, including
voting, memory sharing, or parallel reasoning.

• Noise in User Feedback: Investigate strategies to reduce
bias introduced by noisy or inconsistent user feedback in
the RLHF loop.
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APPENDIX

A. Chain-of-Thought (CoT) Agent Prompt

Provide ONE concise algorithm strategy for
this coding problem in EXACTLY 4 numbered
points:

1. Input/output: Single sentence describing
parameters and return value

2. Approach: Name the exact algorithm/data

https://github.com/satvika-eda/Multi_Agents_Code_Development_Team


structure
3. Key steps: 3-4 bullet points with

specific algorithmic operations
4. Edge cases: 2-3 specific edge conditions,

no explanations needed

Keep total response short. Be direct and
technical. DO NOT include pseudocode,
explanations, test cases, or implementation
details.

Problem:
{problem}

Step-by-step solution:

B. Coder Agent Prompt

Generate only the Python code
implementation for this problem.
Problem:
{problem}

Using this algorithm strategy:
{solution_cot}

STRICT REQUIREMENTS:
- Your output must begin with ‘‘‘python
- Your output must end with ‘‘‘
- ONLY write clean, efficient Python code
- NO text before or after the code block
- NO descriptions of what the code does

Python code:

C. Debugger Agent Prompt

Fix all bugs and inefficiencies in
this Python code.

Problem:
{problem}

Original code:
{code}

CRITICAL REQUIREMENTS:
- Output MUST start with ‘‘‘python

and end with ‘‘‘ ONLY
- NO explanations before or after

the code
- NO test cases or example output
- NO justification of your changes
- MINIMAL code changes to fix

bugs/inefficiencies

Debugged python code:

D. Explainer Agent Prompt

Create a short, beginner-friendly
explanation of this code.

Problem:
{problem}

Code to explain:
{code}

Keep your explanation to 1-2 paragraphs.
Focus on:
- What the code accomplishes
- The core algorithm approach used
- One insightful observation
about why it works

- Any clever tricks worth noting

Use friendly language that makes the
solution approachable.

Python code explanation:
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