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Abstract—In today’s information-driven era, users often 

encounter challenges in efficiently accessing relevant knowledge 
from large textual documents, such as textbooks, research 
papers, and lecture notes. This project aims to develop an 
Intelligent Document Assistant using a Retrieval-Augmented 
Generation (RAG) approach, allowing users to upload lengthy 
documents and interact with them through natural language 
queries. 

The system leverages document parsing and preprocessing 
techniques to extract meaningful content from user-uploaded 
files. The extracted text is divided into manageable chunks and 
converted into dense vector embeddings using a custom 
embedding model. These embeddings are stored in a vector 
database, enabling efficient semantic similarity-based retrieval 
of relevant content. A chatbot interface facilitates seamless 
interaction by utilizing retrieved document chunks to generate 
contextually relevant responses via a generative language model. 

The implementation involves integrating document 
preprocessing (e.g., PyPDF2), embedding generation, and vector 
database management (e.g., ChromaDB) to build a scalable and 
user-friendly solution. The chatbot provides real-time, context-
aware responses, enhancing user engagement and enabling faster 
information access. The system’s performance is evaluated 
through metrics such as Precision, Recall, and Mean Reciprocal 
Rank (MRR) to ensure its effectiveness and reliability. 

Keywords: Retrieval-Augmented Generation, Large Language 
Models, Embedding Models 

 
I.  INTRODUCTION  

 As the volume of digital information continues to grow, the 
ability to quickly and effectively retrieve meaningful insights 

from large documents has become increasingly important. 
Educational materials such as textbooks, research papers, 
and lecture notes are rich sources of knowledge, yet their 
length and complexity often make it difficult for users to 
locate specific information or understand the content 
efficiently. Current search tools provide limited assistance, 
often returning results based on keyword matching rather 
than the actual semantic meaning of the query. 

To address this challenge, this project introduces an 
Intelligent Document Assistant designed to enable 
conversational interactions with large documents. The 
system allows users to upload extensive files, such as 
PDFs or text documents, and engage with their content 
through natural language queries. Unlike traditional search 
engines, this assistant combines semantic search with 
generative language models to retrieve and summarize 
relevant information in real-time. 

The project leverages advanced techniques for text 
parsing, embedding generation, and vector-based retrieval. 
Uploaded documents are pre-processed and split into 
manageable chunks, which are -then converted into dense 
vector representations. These representations are stored in 
a vector database, enabling efficient similarity-based 
retrieval. A generative language model is used to provide 
coherent, context-aware responses based on the retrieved 
information, offering an experience akin to interacting 
with a knowledgeable assistant. 

The Intelligent Document Assistant is designed to enhance 
user learning and engagement by providing precise, 
contextually relevant answers to complex queries. By 
transforming large, static documents into dynamic, 
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interactive resources, this system seeks to redefine how users 
interact with and consume information. 

II. LITERATURE REVIEW  
The integration of artificial intelligence into educational 

settings has introduced novel opportunities to enhance learning 
experiences and improve access to knowledge. Retrieval-
Augmented Generation (RAG) systems have emerged as a 
particularly promising approach in higher education, leveraging 
the combined strengths of large language models (LLMs) and 
information retrieval techniques to provide precise and 
contextually relevant responses to student queries. These systems 
address several challenges traditionally associated with AI-
powered educational tools, including mitigating hallucinations 
and inaccuracies in LLM outputs, providing clear source 
attribution for generated responses, and tailoring information to 
align with specific course content and materials. 

One case study[1]  conducted at a private university 
underscored the transformative potential of RAG systems in 
education. The prototype developed in this study demonstrated 
significant improvements in fostering interactive learning 
experiences, generating contextually accurate answers, and 
delivering efficient question-answering capabilities. This 
evidence highlights the capability of RAG systems to create a 
more dynamic and personalized educational environment, where 
students can engage deeply with subject matter and benefit from 
reliable AI assistance. 

A crucial component of RAG systems is their reliance on 
efficient vector search mechanisms to operate on large datasets. 
The increasing use of vector embeddings necessitates advanced 
retrieval techniques capable of handling substantial data 
volumes. Recent advancements in vector search algorithms have 
prioritized both query efficiency and scalability. For instance, 
graph-based techniques and tree-based approaches have proven 
effective in optimizing indexing processes, while hybrid methods 
that combine multiple data structures have achieved significant 
performance gains. A notable development in this domain is the 
ELPIS[2] algorithm, which has demonstrated superior 
performance in latency-optimized settings, achieving up to twice 
the recall rates of other state-of-the-art methods for datasets 
containing up to one billion vectors. 

Beyond retrieval mechanisms, the broader application of AI 
in education has expanded to include the development of AI-
powered learning environments. These systems, which 
incorporate advanced techniques such as LLMs, RAG, and 
vector embedding, aim to assist students in understanding 
complex scientific texts and fostering critical thinking skills. For 
example, the OwlMentor system was specifically designed to 
support university students in engaging with scientific literature. 
It features document-based chat functionality, automatic question 
generation to enhance comprehension, and AI-driven quiz 
creation with feedback mechanisms. By providing these 
interactive and adaptive learning tools, OwlMentor[5] exemplifies 
how AI systems can empower students to navigate and assimilate 
complex information more effectively. 

The adoption and effectiveness of AI-powered learning tools 
also depend significantly on student acceptance and engagement. 
The Technology Acceptance Model (TAM) has been widely 
utilized to assess the factors influencing the adoption of new 

educational technologies. Key determinants such as 
perceived ease of use, perceived usefulness, and intention to 
use have been shown to play a critical role in the actual usage 
and effectiveness of these tools. Studies suggest that when 
students perceive AI systems as intuitive and beneficial, their 
engagement with these tools increases, ultimately enhancing 
learning outcomes. 

In summary, the convergence of RAG systems, efficient 
vector search technologies, and AI-powered learning 
environments presents a compelling vision for the future of 
education. These innovations not only address existing 
limitations in AI-based educational tools but also provide 
pathways for creating highly interactive, contextually 
relevant, and user-friendly learning experiences. 
Furthermore, understanding and addressing factors 
influencing technology acceptance is essential to 
maximizing the impact of these systems in improving 
educational outcomes. 

 

III. METHODOLOGY  
 To achieve the objectives of the Intelligent Document 
Assistant, the project employs a structured methodology 
comprising the following steps: 

A. Document Parsing and Preprocessing: 

The first step in the system pipeline involves extracting 
meaningful content from user-uploaded documents. This 
process includes: 

• File Handling: Supporting document uploads in 
formats such as PDF and text files. 

• Text Extraction: Using tools like PyPDF2 to 
extract raw text from PDFs or directly processing 
plain text files. 

• Preprocessing: Cleaning and normalizing the 
extracted text, which includes removing 
unnecessary metadata, handling special 
characters, and converting text to lowercase. 

B. Document Chunking and Vectorization 

To ensure efficient storage and retrieval, the parsed text is 
split into smaller, manageable chunks and converted into 
dense vector representations: 

• Text Splitting: Implementing chunking 
techniques with overlapping contexts using a 
RecursiveCharacterTextSplitter to preserve the 
semantic flow across sections. 

• Vector Embedding: Generating dense vector 
representations for each chunk using a custom 
embedding model that captures the semantic 
meaning of the text. These embeddings form the 
core of the knowledge base. 

C. Knowledge Base Creation 

The processed document chunks and their corresponding 
embeddings are stored in a vector database for semantic 
search and retrieval: 
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• Vector Database Setup: Using ChromaDB to store 
and manage embeddings efficiently. 

• Persistence: Ensuring embeddings are persisted for 
reuse across multiple sessions, allowing users to 
query documents uploaded earlier. 

D. Semantic Retrieval 

When a user submits a query, the system identifies the most 
relevant sections of the document based on semantic 
similarity: 

• Query Embedding: The user’s query is embedded 
into the same vector space as the document chunks. 

• Similarity Search: Using algorithms like cosine 
similarity to retrieve the top-k most relevant chunks 
from the vector database. 

E. Response Generation 

To provide meaningful answers, the system integrates the 
retrieved text chunks with a generative language model: 

• Prompt Construction: Combining the user query with 
retrieved chunks into a structured prompt. 

• Language Model Interaction: Leveraging a pre-
trained model, such as ChatGPT, to generate 
contextually coherent responses based on the prompt. 

• Error Handling: Managing situations where no 
relevant chunks are retrieved by returning a fallback 
message. 

F. Chatbot Interface Development 

The system includes an intuitive and user-friendly interface for 
interaction: 

• Frontend Development: Built using Streamlit to 
allow users to upload documents, submit queries, and 
view responses in real-time. 

• Session Management: Storing user messages and 
system responses to maintain conversational context 
across queries. 

• File Upload Validation: Ensuring compatibility with 
supported formats and restricting large files to 
maintain performance. 

 

 
  Figure 1 : Architecture 

By integrating these steps into a cohesive pipeline, the 
Intelligent Document Assistant facilitates efficient and 
accurate retrieval of information from large documents, 
transforming them into interactive, conversational 
knowledge resources.    

IV. IMPLEMENTATION 
A. Text Splitting 

To achieve effective text segmentation, we employ the 
RecursiveCharacterTextSplitter utility. This method divides 
the text based on a predefined character limit, while 
respecting semantic structures such as sentences or 
paragraphs. Overlapping regions between consecutive 
chunks ensure smooth transitions and preserve relationships 
between adjacent text segments. 

The text-splitting process proceeds as follows: 

1. Input: 

• A document's text and its associated metadata 
are provided as input. 

2. Chunk Generation: 

• The RecursiveCharacterTextSplitter divides 
the text into chunks, ensuring that each chunk 
adheres to the specified size and overlap. 

3. Output: 

• The output is a list of Document objects, 
where each object contains a chunk of text and 
its associated metadata. 

B. Custom Embeddings Model 

The embedding model is a critical component of our system, 
designed to transform discrete token indices into dense 
vector representations. These embeddings capture the 
semantic meaning of words or text chunks, enabling effective 
downstream tasks such as similarity search and context-
aware predictions. Below, we outline the architecture and 
functionality of the embedding model, implemented using 
PyTorch.  

 

 
 

  Figure 2: Embedding Model 

 

The model generates vector embeddings that: 

• Represent the semantic meaning of text chunks and 
user queries. 
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• Enable comparison between text chunks and queries in 
a shared vector space. 

• Form the basis for efficient similarity-based retrieval in 
the vector database. 

 

i. Layers: 

The embedding model comprises two primary components: the 
embedding layer and the output layer. The former maps tokens 
to a continuous vector space, while the latter projects these 
embeddings back into the vocabulary space for target token 
prediction. The architecture is lightweight yet powerful, making 
it well-suited for both training and inference scenarios. 

1. Embedding Layer: 

• This layer maps token indices to dense vector 
representations using a trainable embedding matrix 
of size V×DV times DV×D, where VVV is the 
vocabulary size and DDD is the embedding 
dimension. 

• The embedding matrix is initialized randomly and 
updated during training to capture semantic 
relationships between tokens. 

2. Output Layer: 

• A fully connected layer projects embeddings into 
the vocabulary space, producing logits for each 
token in the vocabulary. This layer includes a 
weight matrix of size D×VD times VD×V and a 
bias vector of size VVV. 

The forward pass involves retrieving embeddings for input 
tokens, transforming them through the output layer, and 
producing logits for all vocabulary tokens. 

ii. Training Process: 

The training process optimizes the embedding model to predict 
context words given a target word, using a dataset of (target, 
context) word pairs. The following steps outline the training 
workflow: 

1. Data Preparation: 

• The input comprises a list of (target, context) pairs, 
where each pair is converted to numerical indices 
based on the vocabulary. 

2. Loss Function: 

• Cross-Entropy Loss is used to measure the 
discrepancy between the predicted logits and the 
true context word. It encourages the model to 
assign higher probabilities to the correct context 
word. 

3. Optimizer: 

• The Adam optimizer is employed to update the 
embedding matrix and output layer weights. Adam 
is chosen for its adaptive learning rate, which 
ensures efficient convergence. 

4. Training Loop: 

• The model iterates over the dataset for a 
specified number of epochs, minimizing the 
loss through backpropagation. 

 

C. Prompt Engineering 

The engineered prompt includes several critical details to 
ensure the chatbot's responses are accurate, context-aware, 
and user-focused. It begins with a role definition, specifying 
that the chatbot is designed to answer questions related to the 
provided document. The purpose and scope are clarified, 
emphasizing that responses must rely exclusively on the 
given context, avoiding external knowledge or unsupported 
assumptions. 

The prompt includes answering guidelines to provide factual 
and relevant answers, ensuring adherence to the document's 
content. To handle situations where information is 
unavailable, the prompt specifies a fallback strategy, 
instructing the chatbot to inform the user and suggest query 
rephrasing. It also details prioritization rules, focusing on 
accuracy, relevance, and demonstrating understanding of 
user queries while gracefully indicating when answers are 
not found. 

Additionally, formatting instructions ensure uniform 
presentation of responses, maintaining professionalism and 
consistency. The prompt also includes instructions for 
handling conversational queries, enabling the chatbot to 
provide generic yet engaging responses when the interaction 
deviates from document-specific questions. These details 
collectively guide the language model to generate coherent, 
context-appropriate, and user-friendly outputs. 

V. RESULTS  
The embedding model performed as expected, effectively 

capturing semantic relationships between textual inputs. To 
validate its performance, cosine similarity scores were 
computed for pairs of sentences to evaluate their semantic 
alignment. The results demonstrated a consistent correlation 
between high similarity scores and semantically related 
sentences, confirming the reliability of the embedding 
model. This alignment indicates that the model successfully 
encodes textual information in a meaningful way, which is 
critical for downstream tasks such as context retrieval in the 
RAG system.  

For each query, both precision and recall were calculated, 
and an average was taken across multiple queries to assess 
the overall performance. The model's ability to maintain high 
recall, ensuring that relevant information is not overlooked, 
alongside high precision, which limits the retrieval of 
irrelevant content, was key to its effectiveness.  

These metrics were calculated based on the assumption 
that only content explicitly found in the uploaded document 
is relevant to the query. Given the constraints of the system, 
the performance of the embedding model was highly 
consistent, showing that the embedding process and retrieval 
mechanism were functioning as intended. The evaluation 
strategy, which utilized k-fold cross-validation, helped 
address potential issues of overfitting and underfitting, 
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ensuring that the model generalizes well across various query 
types and document structures. 

The precision and recall values highlight the model's capacity 
to accurately retrieve context-aware responses from the 
document, providing reliable insights and contributing to an 
enhanced user experience. Furthermore, an ablation study 
conducted to evaluate the impact of different configurations 
confirmed the robustness of the embedding model in diverse 
settings, reinforcing its suitability for use in real-time document 
interaction applications. 

 
VII. FUTURE FOCUS   

1. OCR Integration: Implement support for image uploads, 
enabling seamless text extraction from images to enhance data 
accessibility and usability.   
2. Multi-file Upload: Develop functionality for uploading 
multiple files simultaneously, allowing richer context 
generation for user queries.   
3. Feedback Mechanism: Introduce a response rating system to 
collect user feedback, driving continuous improvement in 
system performance and accuracy.   
4. Context Persistence: Implement mechanisms to store and 
retrieve chat sessions, ensuring continuity and personalized 
user experiences over time.   
5. Advanced Query Handling: Integrate re-ranking algorithms 
to optimize the relevance and quality of responses for complex 
or nuanced queries.   
 

VIII. CONCLUSION  
The Intelligent Document Assistant successfully integrates 
retrieval-augmented generation (RAG) with prompt 
engineering to create an effective conversational interface for 
exploring large documents. By combining document 
chunking, semantic embeddings, and carefully structured 
prompts, the system delivers accurate, context-aware 
responses while gracefully handling missing information. It 
enhances user engagement by transforming static documents 
into interactive knowledge resources. This project 
demonstrates the scalability and adaptability of the RAG 
framework, making it a valuable tool for education, research, 
and information access. 
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