
1

Intelligent Document Assistant
A RAG Approach

For Conversational Knowledge
Access

Machine Learning Final Project Report

GROUP - 12

Ayaazuddin Mohammad , Mukesh Kumar Javvaji, Satvika Eda
Khoury College of Computer Sciences

Northeastern University
Boston, USA

mohammad.ay@northeastern.edu, javvaji.m@northeastern.edu,
eda.s@northeastern.edu

Abstract—In today’s information-driven era, users often

encounter challenges in efficiently accessing relevant knowledge
from large textual documents, such as textbooks, research
papers, and lecture notes. This project aims to develop an
Intelligent Document Assistant using a Retrieval-Augmented
Generation (RAG) approach, allowing users to upload lengthy
documents and interact with them through natural language
queries.

The system leverages document parsing and preprocessing
techniques to extract meaningful content from user-uploaded
files. The extracted text is divided into manageable chunks and
converted into dense vector embeddings using a custom
embedding model. These embeddings are stored in a vector
database, enabling efficient semantic similarity-based retrieval
of relevant content. A chatbot interface facilitates seamless
interaction by utilizing retrieved document chunks to generate
contextually relevant responses via a generative language model.

The implementation involves integrating document
preprocessing (e.g., PyPDF2), embedding generation, and vector
database management (e.g., ChromaDB) to build a scalable and
user-friendly solution. The chatbot provides real-time, context-
aware responses, enhancing user engagement and enabling faster
information access. The system’s performance is evaluated
through metrics such as Precision, Recall, and Mean Reciprocal
Rank (MRR) to ensure its effectiveness and reliability.

Keywords: Retrieval-Augmented Generation, Large Language
Models, Embedding Models

I. INTRODUCTION

 As the volume of digital information continues to grow, the
ability to quickly and effectively retrieve meaningful insights

from large documents has become increasingly important.
Educational materials such as textbooks, research papers,
and lecture notes are rich sources of knowledge, yet their
length and complexity often make it difficult for users to
locate specific information or understand the content
efficiently. Current search tools provide limited assistance,
often returning results based on keyword matching rather
than the actual semantic meaning of the query.

To address this challenge, this project introduces an
Intelligent Document Assistant designed to enable
conversational interactions with large documents. The
system allows users to upload extensive files, such as
PDFs or text documents, and engage with their content
through natural language queries. Unlike traditional search
engines, this assistant combines semantic search with
generative language models to retrieve and summarize
relevant information in real-time.

The project leverages advanced techniques for text
parsing, embedding generation, and vector-based retrieval.
Uploaded documents are pre-processed and split into
manageable chunks, which are -then converted into dense
vector representations. These representations are stored in
a vector database, enabling efficient similarity-based
retrieval. A generative language model is used to provide
coherent, context-aware responses based on the retrieved
information, offering an experience akin to interacting
with a knowledgeable assistant.

The Intelligent Document Assistant is designed to enhance
user learning and engagement by providing precise,
contextually relevant answers to complex queries. By
transforming large, static documents into dynamic,

2

interactive resources, this system seeks to redefine how users
interact with and consume information.

II. LITERATURE REVIEW
The integration of artificial intelligence into educational

settings has introduced novel opportunities to enhance learning
experiences and improve access to knowledge. Retrieval-
Augmented Generation (RAG) systems have emerged as a
particularly promising approach in higher education, leveraging
the combined strengths of large language models (LLMs) and
information retrieval techniques to provide precise and
contextually relevant responses to student queries. These systems
address several challenges traditionally associated with AI-
powered educational tools, including mitigating hallucinations
and inaccuracies in LLM outputs, providing clear source
attribution for generated responses, and tailoring information to
align with specific course content and materials.

One case study[1] conducted at a private university
underscored the transformative potential of RAG systems in
education. The prototype developed in this study demonstrated
significant improvements in fostering interactive learning
experiences, generating contextually accurate answers, and
delivering efficient question-answering capabilities. This
evidence highlights the capability of RAG systems to create a
more dynamic and personalized educational environment, where
students can engage deeply with subject matter and benefit from
reliable AI assistance.

A crucial component of RAG systems is their reliance on
efficient vector search mechanisms to operate on large datasets.
The increasing use of vector embeddings necessitates advanced
retrieval techniques capable of handling substantial data
volumes. Recent advancements in vector search algorithms have
prioritized both query efficiency and scalability. For instance,
graph-based techniques and tree-based approaches have proven
effective in optimizing indexing processes, while hybrid methods
that combine multiple data structures have achieved significant
performance gains. A notable development in this domain is the
ELPIS[2] algorithm, which has demonstrated superior
performance in latency-optimized settings, achieving up to twice
the recall rates of other state-of-the-art methods for datasets
containing up to one billion vectors.

Beyond retrieval mechanisms, the broader application of AI
in education has expanded to include the development of AI-
powered learning environments. These systems, which
incorporate advanced techniques such as LLMs, RAG, and
vector embedding, aim to assist students in understanding
complex scientific texts and fostering critical thinking skills. For
example, the OwlMentor system was specifically designed to
support university students in engaging with scientific literature.
It features document-based chat functionality, automatic question
generation to enhance comprehension, and AI-driven quiz
creation with feedback mechanisms. By providing these
interactive and adaptive learning tools, OwlMentor[5] exemplifies
how AI systems can empower students to navigate and assimilate
complex information more effectively.

The adoption and effectiveness of AI-powered learning tools
also depend significantly on student acceptance and engagement.
The Technology Acceptance Model (TAM) has been widely
utilized to assess the factors influencing the adoption of new

educational technologies. Key determinants such as
perceived ease of use, perceived usefulness, and intention to
use have been shown to play a critical role in the actual usage
and effectiveness of these tools. Studies suggest that when
students perceive AI systems as intuitive and beneficial, their
engagement with these tools increases, ultimately enhancing
learning outcomes.

In summary, the convergence of RAG systems, efficient
vector search technologies, and AI-powered learning
environments presents a compelling vision for the future of
education. These innovations not only address existing
limitations in AI-based educational tools but also provide
pathways for creating highly interactive, contextually
relevant, and user-friendly learning experiences.
Furthermore, understanding and addressing factors
influencing technology acceptance is essential to
maximizing the impact of these systems in improving
educational outcomes.

III. METHODOLOGY
 To achieve the objectives of the Intelligent Document
Assistant, the project employs a structured methodology
comprising the following steps:

A. Document Parsing and Preprocessing:

The first step in the system pipeline involves extracting
meaningful content from user-uploaded documents. This
process includes:

• File Handling: Supporting document uploads in
formats such as PDF and text files.

• Text Extraction: Using tools like PyPDF2 to
extract raw text from PDFs or directly processing
plain text files.

• Preprocessing: Cleaning and normalizing the
extracted text, which includes removing
unnecessary metadata, handling special
characters, and converting text to lowercase.

B. Document Chunking and Vectorization

To ensure efficient storage and retrieval, the parsed text is
split into smaller, manageable chunks and converted into
dense vector representations:

• Text Splitting: Implementing chunking
techniques with overlapping contexts using a
RecursiveCharacterTextSplitter to preserve the
semantic flow across sections.

• Vector Embedding: Generating dense vector
representations for each chunk using a custom
embedding model that captures the semantic
meaning of the text. These embeddings form the
core of the knowledge base.

C. Knowledge Base Creation

The processed document chunks and their corresponding
embeddings are stored in a vector database for semantic
search and retrieval:

3

• Vector Database Setup: Using ChromaDB to store
and manage embeddings efficiently.

• Persistence: Ensuring embeddings are persisted for
reuse across multiple sessions, allowing users to
query documents uploaded earlier.

D. Semantic Retrieval

When a user submits a query, the system identifies the most
relevant sections of the document based on semantic
similarity:

• Query Embedding: The user’s query is embedded
into the same vector space as the document chunks.

• Similarity Search: Using algorithms like cosine
similarity to retrieve the top-k most relevant chunks
from the vector database.

E. Response Generation

To provide meaningful answers, the system integrates the
retrieved text chunks with a generative language model:

• Prompt Construction: Combining the user query with
retrieved chunks into a structured prompt.

• Language Model Interaction: Leveraging a pre-
trained model, such as ChatGPT, to generate
contextually coherent responses based on the prompt.

• Error Handling: Managing situations where no
relevant chunks are retrieved by returning a fallback
message.

F. Chatbot Interface Development

The system includes an intuitive and user-friendly interface for
interaction:

• Frontend Development: Built using Streamlit to
allow users to upload documents, submit queries, and
view responses in real-time.

• Session Management: Storing user messages and
system responses to maintain conversational context
across queries.

• File Upload Validation: Ensuring compatibility with
supported formats and restricting large files to
maintain performance.

 Figure 1 : Architecture

By integrating these steps into a cohesive pipeline, the
Intelligent Document Assistant facilitates efficient and
accurate retrieval of information from large documents,
transforming them into interactive, conversational
knowledge resources.

IV. IMPLEMENTATION
A. Text Splitting

To achieve effective text segmentation, we employ the
RecursiveCharacterTextSplitter utility. This method divides
the text based on a predefined character limit, while
respecting semantic structures such as sentences or
paragraphs. Overlapping regions between consecutive
chunks ensure smooth transitions and preserve relationships
between adjacent text segments.

The text-splitting process proceeds as follows:

1. Input:

• A document's text and its associated metadata
are provided as input.

2. Chunk Generation:

• The RecursiveCharacterTextSplitter divides
the text into chunks, ensuring that each chunk
adheres to the specified size and overlap.

3. Output:

• The output is a list of Document objects,
where each object contains a chunk of text and
its associated metadata.

B. Custom Embeddings Model

The embedding model is a critical component of our system,
designed to transform discrete token indices into dense
vector representations. These embeddings capture the
semantic meaning of words or text chunks, enabling effective
downstream tasks such as similarity search and context-
aware predictions. Below, we outline the architecture and
functionality of the embedding model, implemented using
PyTorch.

 Figure 2: Embedding Model

The model generates vector embeddings that:

• Represent the semantic meaning of text chunks and
user queries.

4

• Enable comparison between text chunks and queries in
a shared vector space.

• Form the basis for efficient similarity-based retrieval in
the vector database.

i. Layers:

The embedding model comprises two primary components: the
embedding layer and the output layer. The former maps tokens
to a continuous vector space, while the latter projects these
embeddings back into the vocabulary space for target token
prediction. The architecture is lightweight yet powerful, making
it well-suited for both training and inference scenarios.

1. Embedding Layer:

• This layer maps token indices to dense vector
representations using a trainable embedding matrix
of size V×DV times DV×D, where VVV is the
vocabulary size and DDD is the embedding
dimension.

• The embedding matrix is initialized randomly and
updated during training to capture semantic
relationships between tokens.

2. Output Layer:

• A fully connected layer projects embeddings into
the vocabulary space, producing logits for each
token in the vocabulary. This layer includes a
weight matrix of size D×VD times VD×V and a
bias vector of size VVV.

The forward pass involves retrieving embeddings for input
tokens, transforming them through the output layer, and
producing logits for all vocabulary tokens.

ii. Training Process:

The training process optimizes the embedding model to predict
context words given a target word, using a dataset of (target,
context) word pairs. The following steps outline the training
workflow:

1. Data Preparation:

• The input comprises a list of (target, context) pairs,
where each pair is converted to numerical indices
based on the vocabulary.

2. Loss Function:

• Cross-Entropy Loss is used to measure the
discrepancy between the predicted logits and the
true context word. It encourages the model to
assign higher probabilities to the correct context
word.

3. Optimizer:

• The Adam optimizer is employed to update the
embedding matrix and output layer weights. Adam
is chosen for its adaptive learning rate, which
ensures efficient convergence.

4. Training Loop:

• The model iterates over the dataset for a
specified number of epochs, minimizing the
loss through backpropagation.

C. Prompt Engineering

The engineered prompt includes several critical details to
ensure the chatbot's responses are accurate, context-aware,
and user-focused. It begins with a role definition, specifying
that the chatbot is designed to answer questions related to the
provided document. The purpose and scope are clarified,
emphasizing that responses must rely exclusively on the
given context, avoiding external knowledge or unsupported
assumptions.

The prompt includes answering guidelines to provide factual
and relevant answers, ensuring adherence to the document's
content. To handle situations where information is
unavailable, the prompt specifies a fallback strategy,
instructing the chatbot to inform the user and suggest query
rephrasing. It also details prioritization rules, focusing on
accuracy, relevance, and demonstrating understanding of
user queries while gracefully indicating when answers are
not found.

Additionally, formatting instructions ensure uniform
presentation of responses, maintaining professionalism and
consistency. The prompt also includes instructions for
handling conversational queries, enabling the chatbot to
provide generic yet engaging responses when the interaction
deviates from document-specific questions. These details
collectively guide the language model to generate coherent,
context-appropriate, and user-friendly outputs.

V. RESULTS
The embedding model performed as expected, effectively

capturing semantic relationships between textual inputs. To
validate its performance, cosine similarity scores were
computed for pairs of sentences to evaluate their semantic
alignment. The results demonstrated a consistent correlation
between high similarity scores and semantically related
sentences, confirming the reliability of the embedding
model. This alignment indicates that the model successfully
encodes textual information in a meaningful way, which is
critical for downstream tasks such as context retrieval in the
RAG system.

For each query, both precision and recall were calculated,
and an average was taken across multiple queries to assess
the overall performance. The model's ability to maintain high
recall, ensuring that relevant information is not overlooked,
alongside high precision, which limits the retrieval of
irrelevant content, was key to its effectiveness.

These metrics were calculated based on the assumption
that only content explicitly found in the uploaded document
is relevant to the query. Given the constraints of the system,
the performance of the embedding model was highly
consistent, showing that the embedding process and retrieval
mechanism were functioning as intended. The evaluation
strategy, which utilized k-fold cross-validation, helped
address potential issues of overfitting and underfitting,

5

ensuring that the model generalizes well across various query
types and document structures.

The precision and recall values highlight the model's capacity
to accurately retrieve context-aware responses from the
document, providing reliable insights and contributing to an
enhanced user experience. Furthermore, an ablation study
conducted to evaluate the impact of different configurations
confirmed the robustness of the embedding model in diverse
settings, reinforcing its suitability for use in real-time document
interaction applications.

VII. FUTURE FOCUS

1. OCR Integration: Implement support for image uploads,
enabling seamless text extraction from images to enhance data
accessibility and usability.
2. Multi-file Upload: Develop functionality for uploading
multiple files simultaneously, allowing richer context
generation for user queries.
3. Feedback Mechanism: Introduce a response rating system to
collect user feedback, driving continuous improvement in
system performance and accuracy.
4. Context Persistence: Implement mechanisms to store and
retrieve chat sessions, ensuring continuity and personalized
user experiences over time.
5. Advanced Query Handling: Integrate re-ranking algorithms
to optimize the relevance and quality of responses for complex
or nuanced queries.

VIII. CONCLUSION
The Intelligent Document Assistant successfully integrates
retrieval-augmented generation (RAG) with prompt
engineering to create an effective conversational interface for
exploring large documents. By combining document
chunking, semantic embeddings, and carefully structured
prompts, the system delivers accurate, context-aware
responses while gracefully handling missing information. It
enhances user engagement by transforming static documents
into interactive knowledge resources. This project
demonstrates the scalability and adaptability of the RAG
framework, making it a valuable tool for education, research,
and information access.

IX. REFERENCES
1. Triwicaksana, M. B., & Oktavia, T. (2023). Building a

Retrieval-Augmented Generation System for Enhanced
Student Learning: Case Study at Private University.
Journal of Theoretical and Applied Information
Technology, 101(22), 7381-7386

2. Azizi, I. (2024). Vector Search on Billion-Scale Data
Collections. VLDB 2024 Ph.D. Workshop.

3. Vidra, N. (2024). Improving Retrieval for RAG based
Question Answering Models on Financial Documents.
arXiv preprint arXiv:2404.07221.

4. Štula, M., Šimić, D., & Radovan, A. (2024). Integrating a
Virtual Assistant by Using the RAG Method and Google

Vertex AI Palm-2 Model. Applied Sciences, 14(22),
10748.

5. Mayer, R. E., Fiorella, L., & Stull, A. (2024). Exploring
generative AI in higher education: a RAG system to
support students' comprehension of scientific texts.
Frontiers in Psychology, 15, 1474892.

