
Robot Writing for Sign Language 

Ahilesh Rajaram, Anusha Manohar, Mukesh Javvaji, Yuxi Zhou 

rajaram.a@northeastern.edu, manohar.an@northeastern.edu, javvaji.m@northeastern.edu, zhou.yuxi1@northeastern.edu  

Link to the Github: https://github.com/anushamanohar/CS5335_Final_Project.git 

Link to the google drive (for datasets): 

https://drive.google.com/drive/folders/1M8HVJYrZNrS1S9WH45L3Uo6_VUvHdwca?usp=drive_link 

 

1. Abstract 

This paper presents the design and implementation of a novel assistive technology system that bridges the 

communication gap between sign language users and the written word. Our system combines computer vision and 

robotics to create an end-to-end solution that detects American Sign Language (ASL) gestures and physically 

transcribes them into text. Using a custom-trained YOLOv5 model, the system recognizes hand signs in real-time 

from webcam input with high accuracy, implementing a frame-stabilization technique to ensure reliable detection. 

The recognized signs are then converted to text and transmitted to a Pincher X 150 robotic arm, which physically 

writes the corresponding letters on a whiteboard using innovative kinematic solutions to overcome the limitations 

of the 4-DOF robotic platform. We address several technical challenges, including maintaining consistent pen-to-

whiteboard contact through dynamic roll adjustment and parabolic path mapping, extracting and optimizing 

character stroke patterns from SVG font files, and ensuring smooth transitions between letters. Experimental 

results demonstrate the system's ability to successfully detect and transcribe multiple ASL alphabet signs with 

high reliability. This technology has potential applications in education, accessibility, and human-robot interaction 

domains. 

 

2. Introduction 

Sign language is a vital communication method for millions of individuals in the deaf and hard-of-hearing 

community worldwide. While sign language effectively facilitates communication among those who understand 

it, barriers persist when interacting with individuals unfamiliar with these visual-gestural languages. Traditional 

approaches to bridging this gap have focused on digital translations or virtual avatars, but these solutions often 

lack the tangible, permanent output that written communication provides. 

The Robot Handwriting for Sign Language project addresses this challenge by creating a physical system that 

observes, interprets, and transcribes sign language into written text. By combining state-of-the-art computer vision 

techniques with precision robotics, our system serves as a mechanical interpreter that can transform ephemeral 

hand gestures into lasting written communication accessible to anyone who can read. 

At the core of our system is a computer vision pipeline powered by a custom-trained YOLOv5 model that 

identifies American Sign Language (ASL) alphabet signs with high accuracy. The detected signs undergo a 

stabilization process to eliminate transient misdetections before being converted to text. This text is then processed 

by our robotic writing module, which transforms each character into a series of precise movement commands for 

a Pincher X 150 robotic arm equipped with a writing implement. 

Implementing this system required overcoming several significant technical challenges. The 4-DOF limitations 

of the Pincher X 150 arm necessitated creative solutions to maintain consistent contact with a vertical writing 

surface. We developed mathematical models for dynamic roll adjustment and parabolic path mapping to ensure 

the pen remains perpendicular to the whiteboard throughout the writing process. Additionally, we created 

algorithms to extract and optimize character stroke patterns from SVG font files, ensuring natural-looking letter 

formation and smooth transitions between characters. 
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This paper details the design, implementation, and evaluation of our sign language to handwritten text system. We 

discuss the computer vision approach used for sign recognition, the mechanical and algorithmic solutions 

developed for robotic writing, the integration challenges encountered, and the performance of the complete system. 

We also explore potential applications in educational settings, accessibility tools, and human-robot interaction 

domains, along with directions for future enhancement and extension of this technology. 

 

3. Methodology 

 

3.1. Computer Vision Module 

The Sign Language Robot project begins with the Computer Vision Module, which forms the foundation of the 

system. This component utilizes a custom-trained YOLOv5 model to detect American Sign Language gestures in 

real-time from webcam input. The module incorporates a sophisticated stabilization algorithm that requires five 

consecutive identical detections before confirming a sign, effectively eliminating transient misrecognitions. The 

user interface provides immediate visual feedback, supports both uppercase and lowercase modes, and offers 

essential text manipulation features including spaces, deletions, and clearing options. 

 

3.2. SVG Path Processing Module 

Working in tandem with the vision system, the SVG Path Processing Module serves as the bridge between detected 

signs and robot movements. This component extracts specific glyphs from SVG font files based on Unicode values 

and transforms complex vector paths into optimized waypoints suitable for robotic execution. The module 

employs adaptive sampling techniques that apply variable point density—creating finer resolution for curves 

while using fewer points for straight lines—resulting in smooth, natural-looking handwriting. Additionally, it 

organizes waypoints into distinct strokes and ensures consistent letter formation with standardized starting 

positions. 

 

3.3. Robot Control Module 

The Robot Control Module directly interfaces with the Pincher X 150 hardware through the InterbotixRobot SDK, 

translating processed waypoints into precise physical movements. To overcome the inherent limitations of the 4-

DOF arm when writing on a vertical surface, this module implements two innovative solutions: a dynamic roll 

adjustment algorithm that keeps the pen perpendicular to the writing surface throughout execution, and a parabolic 

mapping function that strategically adjusts the x-coordinate based on the current y-position. These mathematical 

adaptations enable smooth, consistent pen contact despite the robot's kinematic constraints. 

 

3.4. Integration Module 

The Integration Module serves as the central coordinator, connecting all components into a cohesive system. It 

manages the complete pipeline from sign detection to physical writing, handling text processing, character spacing, 

and positioning logic for multi-character words. The module efficiently sequences pen-up and pen-down 

operations between strokes and characters, ensuring natural transitions and readable output. Supporting all these 

components, the Visualization Module provides essential debugging and verification capabilities, creating visual 

representations of planned paths and helping tune writing parameters for optimal performance. 

 

3.5. Workflow and System Design 



 

 

4. Requirements and Tools 

 

4.1. Hardware Components 

The primary hardware component of our system is the Pincher X 150 robotic arm, a 4-DOF manipulator selected 

for its affordability, accessibility, and sufficient precision for writing tasks. The arm features a gripper mechanism 

modified to securely hold a standard whiteboard marker. Additional hardware includes a standard webcam for 

video input, a stable mounting system for both the camera and robotic arm, and a vertically positioned whiteboard 

for writing output. 

 

4.2. Software Environment 

Our system was developed and deployed on Ubuntu 20.04 LTS as the operating system platform, providing a 

stable foundation for both the computer vision and robotics components. We utilized ROS Noetic (Robot 

Operating System) as the middleware framework, which facilitated communication between system modules and 

provided essential tools for robot control and visualization. Python 3 served as our primary programming language, 

allowing seamless integration with both computer vision libraries and robot control interfaces. 

 

4.3. Development Tools and Libraries 

For computer vision development, we leveraged several specialized tools: 

• PyTorch and Ultralytics' YOLOv5 for model training and inference 

• OpenCV for image acquisition and preprocessing 

• CUDA for GPU acceleration during model training 

The robotic control system utilized: 

• Interbotix Python SDK for direct control of the Pincher X 150 arm 

• svgpathtools for parsing and processing SVG font files 

• Matplotlib for visualization and debugging of planned paths 

 

4.4. Training Datasets 

Our computer vision model was trained using two primary datasets: 

1. ASL Alphabet dataset from Kaggle (https://www.kaggle.com/datasets/grassknoted/asl-alphabet), 

containing over 87,000 images of ASL hand signs 

2. FER2013 dataset (https://www.kaggle.com/datasets/msambare/fer2013) was used to supplement training 

with additional hand positions and variations 

These datasets were augmented with custom captures to improve robustness across different lighting conditions 

and users, resulting in a comprehensive training set that enabled reliable sign detection. 

 

4.5. Integration Requirements 

The complete system integration required careful calibration between the camera's field of view and the robot's 

workspace. This calibration process established the spatial relationship between detected signs and the writing 
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surface, ensuring that the complete pipeline from detection to physical writing maintained proper coordination. 

Additional requirements included consistent lighting conditions for optimal detection and a stable mounting 

arrangement to prevent calibration drift during operation. 

 

 

5. Computer Vision System 

 

5.1. Model Architecture and Selection 

The computer vision component of our Sign Language Robot utilizes a custom-trained YOLOv5 model for 

American Sign Language (ASL) detection. After extensive experimentation with multiple approaches including 

MediaPipe and various synthetic datasets, we determined that YOLOv5 offered the optimal balance of accuracy, 

processing speed, and deployment flexibility for our specific use case. The object detection architecture of 

YOLOv5 proved particularly effective for identifying hand positions and configurations in varied lighting 

conditions and backgrounds. 

 

5.2. Dataset and Training 

Our training approach involved curating a comprehensive ASL dataset from open repositories, which we then 

augmented with additional samples to improve robustness. The data preprocessing pipeline included 

normalization, augmentation (rotation, scaling, and brightness adjustments), and careful labeling to ensure 

consistent recognition across different users and environments. Training was conducted locally using GPU 

acceleration, with a configured virtual environment to maintain dependency consistency. The training process 

involved setting up appropriate file paths, configuring system adaptability settings, and implementing early 

stopping to prevent overfitting. 

 

5.3. Detection Algorithm Implementation 

The ASLDetector class in our system implements several sophisticated mechanisms to ensure reliable sign 

recognition: 

1. Confidence Thresholding: We utilize a 0.25 confidence threshold to balance detection sensitivity with 

false positive reduction. 

2. Prediction Stabilization: To overcome transient misdetections, we implemented a consecutive frame 

validation system that requires the same sign to be detected across five consecutive frames before 

confirming it as the user's intended gesture. 

3. Real-time Visualization: The system provides immediate visual feedback by rendering bounding boxes 

around detected hand signs along with confidence scores, helping users adjust their signing for optimal 

recognition. 

4. User Interface Controls: The detection module includes comprehensive on-screen instructions and 

keyboard controls for adding detected letters, managing text (backspace, clear), switching case modes, 

and saving frames for future analysis. 



 

5.4. MediaPipe Experimentation 

Before settling on YOLOv5, we explored MediaPipe for hand gesture recognition. This approach used holistic 

camera frames to extract hand landmarks and implemented an LSTM-based architecture for sequence 

classification. While we successfully trained models to recognize simple phrases like "thank you," "hello," and "I 

love you" using customized datasets stored in NPY format, the MediaPipe implementation showed significant 

limitations in angle invariance and person-independence. The same gestures achieved higher recognition accuracy 

only when placed at angles nearly identical to the training frames, making it less suitable for our general-purpose 

application. 

 

 

5.5. Evaluation Metrics 

The computer vision system was evaluated using four key metrics: 

1. Accuracy: Measured by the model's ability to correctly identify ASL signs across different users and 

conditions. 

2. Efficiency: Assessed through frame processing speed and resource utilization, ensuring real-time 

performance on standard hardware. 

3. Consistency: Evaluated by testing recognition stability across multiple signings of the same letter and 

between different users. 

4. Recognizability Range: Determined by the system's ability to maintain accurate detection across varied 

hand positions, angles, and distances from the camera. 

The final implementation achieves high accuracy with minimal false positives, processes frames in real-time even 

on CPU-only systems, maintains consistent recognition across users, and accommodates a reasonable range of 

signing positions and styles. 

 

6. Robot Writing System 

 

6.1. Hardware and Framework Integration 

The robotic writing component employs a Pincher X 150 robotic arm, a 4-DOF manipulator with precision control 

capabilities. Despite its limited degrees of freedom compared to industrial alternatives, we selected this platform 

for its accessibility, programmability, and sufficient reach for whiteboard writing applications. The system 

interfaces with the hardware through the InterbotixRobot SDK, providing abstracted control functions that 

translate planned waypoints into coordinated joint movements. This integration required careful calibration of the 

gripper system to maintain consistent marker grip pressure—tight enough to prevent slipping but gentle enough 

to avoid damaging the writing implement. 



 

6.2. Dynamic Orientation Control 

A significant challenge in implementing vertical writing with a 4-DOF arm was maintaining consistent contact 

between the marker tip and whiteboard surface throughout the writing motion. We developed two complementary 

solutions to address this limitation: 

1. Dynamic Roll Adjustment: The system continuously modifies the roll angle of the end effector based on 

its current y-position using a carefully calibrated formula (roll = np.round(-4.26*-(stroke[i][0]+y_offset), 

3)). This adjustment ensures the marker remains perpendicular to the writing surface regardless of 

position, preventing uneven pressure that would result in inconsistent line quality. 

2. Parabolic X-Axis Mapping: We implemented a mathematical transformation function (map_y_to_x) that 

dynamically adjusts the x-coordinate based on the current y-position following a parabolic curve. This 

compensation accounts for the arm's kinematic constraints when approaching different areas of the 

whiteboard, maintaining optimal contact without requiring additional degrees of freedom. 

 

6.3. Path Generation and Optimization 

The ReadSVG class handles the complex process of transforming font glyphs into executable robot paths: 

1. SVG Parsing and Extraction: The system extracts specific character glyphs from standard SVG font files 

using their Unicode values, accessing the vector path data that defines each letter's structure. 

2. Adaptive Waypoint Generation: Rather than using uniform sampling, our algorithm implements adaptive 

density control that places more waypoints along curves and fewer along straight segments. This 

optimization produces more natural-looking writing while minimizing unnecessary robot movements. 

3. Stroke Organization: The system identifies and organizes waypoints into logical strokes, properly 

sequencing pen-up and pen-down operations to maintain natural writing flow. We implemented 

specialized sorting algorithms to ensure each letter's starting point remains consistent, creating 

predictable and readable output. 

 

6.4. Writing Coordination and Execution 

The Writer class orchestrates the physical writing process through a series of carefully sequenced operations: 

1. Path Execution: Each letter's waypoints are processed sequentially, with the arm performing precise 

transitions between points while maintaining appropriate velocity profiles for smooth writing. 

2. Pen Management: The system implements controlled pen-up and pen-down movements between strokes, 

lifting the marker just enough to prevent unwanted marks while minimizing travel time. 

3. Position Tracking: Throughout execution, the robot tracks its last position to ensure continuous writing 

across multiple letters, using y-offset calculations to maintain proper spacing and alignment. 

4. Padding and Layout Management: A specialized padding function ensures proper spacing between letters, 

particularly important for maintaining readability when writing multiple characters in sequence. 

 

6.5. Evaluation Metrics 

The robotic writing system was evaluated using several key performance metrics: 

1. Legibility: We assessed the readability of the produced text through visual inspection and user testing, 



ensuring that the written characters were clearly identifiable to readers unfamiliar with the system. 

2. Consistency: Measured by comparing multiple instances of the same character written by the robot, 

analyzing variation in stroke width, character dimensions, and overall appearance. 

3. Completion Rate: Evaluated by the percentage of successfully completed characters without failures such 

as marker slippage or missed contact with the writing surface. 

4. Writing Speed: Quantified as the time required to complete full characters and words, balanced against 

quality considerations to optimize for both speed and legibility. 

5. Resource Efficiency: Analyzed by monitoring power consumption, computational demands, and 

mechanical wear during extended writing sessions. 

 

After extensive testing and refinement, the robot writing system achieves reliable, consistent letter formation with 

natural appearance, effectively translating the detected ASL signs into readable text on the whiteboard. 

 

7. System Setup and Implementation 

 

7.1 System and Robotic Arm Simulation Setup 

Our development process began with establishing a robust environment for both simulation and physical testing. 

This initial phase encountered several technical challenges that required systematic troubleshooting. A significant 

hurdle emerged with the package management system, producing the error "E: Unable to parse package file 

/var/lib/apt/lists/partial/archive.ubuntu.com_ubuntu_dists_precise_multiverse_i18n_Index (1)." This stemmed 

from network connectivity issues and virtual machine configurations. After investigation, we addressed these 

issues by migrating from VirtualBox to VMware and implementing Ubuntu mirror repositories to ensure stable 

package access. 

The development environment setup required careful management of dependencies and package sources. We 

resolved duplicate source problems by clearing the local package cache, updating repository lists, and transitioning 

to a currently supported Ubuntu distribution. This provided a stable foundation for both the computer vision 

processing and robot control components. 

Hardware integration presented another layer of complexity. Initially, the USB device connecting to the Pincher 

X 150 robotic arm wasn't recognized properly by the system. We systematically adjusted USB port configurations 

on both the host Windows system and the virtual machine, verifying proper enumeration and permissions to 

restore device communication. This careful configuration ensured reliable control signals could be transmitted to 

the robotic arm without latency issues that would compromise writing precision. 

 

7.2. Robotic Arm Testing and Calibration 

Once the basic system was operational, we conducted extensive testing of the robotic arm's capabilities and 

limitations. This involved systematically mapping the arm's range of motion within its workspace, particularly 

focusing on the areas relevant to whiteboard writing. We identified several "dead angles" where the arm's 

kinematic constraints prevented reliable positioning, allowing us to define usable boundaries for our writing area. 

During the testing phase, we created a keyboard-controlled interface to manually position the arm, which proved 

invaluable for discovering the practical two-dimensional coordinate range for writing operations. This hands-on 

approach allowed us to match the origin points between the simulation environment and the physical arm, ensuring 

consistency between planned and executed movements. We deliberately tested boundary conditions and invalid 

inputs to understand the system's failure modes and implement appropriate safeguards. 

 



7.3. Implementation and Execution 

The implementation process followed an iterative development approach. For the computer vision component, we 

began with basic ASL letter detection and progressively refined the model through training iterations. The 

YOLOv5 model was initially trained on a general dataset, then fine-tuned with additional samples focused on 

challenging recognition cases identified during testing. 

For the robotic writing system, we started with basic letter formation and gradually incorporated the dynamic 

adaptations needed for consistent writing. The SVG path extraction and transformation pipeline underwent 

multiple refinements to improve letter quality and natural appearance. Each iteration addressed specific issues 

observed during testing, such as inconsistent pen pressure or unnatural stroke execution. 

System integration occurred incrementally, first connecting basic letter detection to simple robotic movements, 

then adding the advanced features such as text buffering, case switching, and multi-character writing. At each 

stage, we conducted comprehensive testing with different users and lighting conditions to identify and address 

edge cases. 

The final system execution follows a structured pipeline: The webcam captures frames that are processed through 

the YOLOv5 model, detected signs undergo stability verification, confirmed letters are converted to text, this text 

is transformed into waypoints through SVG parsing, and finally, these waypoints guide the robotic arm's 

movements to create physical writing on the whiteboard. This complete pipeline functions as an integrated system 

that successfully translates hand gestures into legible written text. 

 

8. Limitations and Challenges 

8.1. Computer Vision System 

The vision system encountered several performance-limiting factors during development and testing. These 

challenges highlighted both hardware constraints and the complexities of creating a robust sign language detection 

system. From our research process, we face challenges in reaching accurate gesture detection. For static images, 

dark environment with blurred contours creates challenges for training the Yolov5 model. When recognizing the 

gesture letters in the bounding box, the shadow between overlapping fingers creates confusion for the model to 

distinguish similar gestures such as “M” and “T”.  

Key limitations included: 

• Sensitivity to ambient lighting conditions, with degraded performance in low-light environments 

• Difficulty distinguishing signs against distant areas or moving backgrounds 

• Reduced accuracy when encountering signing styles that differed significantly from the training dataset 

• Limited ability to recognize dynamic signs involving motion 

 

8.2. Robotic Writing System 

The robotic writing component faced physical and mechanical challenges that impacted writing quality and system 

usability. These limitations stemmed primarily from the inherent constraints of the hardware platform. 

Major challenges included: 

• The Pincher X 150's 4-DOF limitation causing inconsistent pressure at whiteboard edges 

• Gradual drift in precision during extended operation requiring recalibration 

• Necessarily slow writing speed to maintain quality and consistent marker contact 

• Variations in performance with different marker types and ink levels 

• Limited usable writing area due to the robot's reach constraints 

 

8.3. Integration Challenges 



Combining the vision and robotic systems created additional complexities beyond those faced by each component 

individually. These integration issues affected the overall user experience and deployment flexibility. 

Notable integration challenges: 

• Timing synchronization between sign detection and writing execution 

• Limited portability due to calibration requirements and physical setup needs 

• High computational demands from simultaneous vision processing and robot control 

• User confusion from variable delays between signing and completed writing 

• Resource constraints affecting deployment options and system cost 

 

9. Future Work 

The Sign Language Robot project demonstrates promising capabilities, but several avenues for improvement and 

expansion remain. Future development could focus on enhancing the vision system with more diverse training 

data to improve recognition across different users and environments. Implementing deep learning models capable 

of recognizing dynamic signs and full ASL phrases would significantly expand communication capabilities. From 

existing research, there are approaches in applying WiFi CSI with vision-based frameworks like YOLOv8 and 

Mediapipe.  [1] From this source, we can refine the gesture recognition pipeline targeting the inaccuracy caused 

by depth calculation. Hardware improvements could include upgrading to a robotic arm with additional degrees 

of freedom to improve writing quality and speed. Miniaturization of the system components would enhance 

portability and deployment flexibility. Integration with text-to-speech capabilities could create a bidirectional 

communication bridge between signed and spoken language, further expanding accessibility applications. 

Key areas for future development: 

• Expanded training dataset encompassing greater user diversity and consecutive frames 

• Explore hybrid pipeline in merging yolov5 and mediapipe 

• Hardware upgrades for improved writing precision and speed 

• Miniaturization for enhanced portability 

• Integration with complementary accessibility technologies 

 

10. Conclusion 

The Robot Handwriting for Sign Language project successfully demonstrates the feasibility of creating a physical 

bridge between American Sign Language and written text. By combining computer vision and robotic control 

technologies, we've developed a system that can observe hand gestures, interpret them as letters, and physically 

transcribe them onto a writing surface. Despite the challenges inherent in both the detection and writing 

components, our approach effectively translates ephemeral visual communication into permanent written form. 

The implementations of the YOLOv5-based detection system and the innovative solutions for robotic writing 

demonstrate how creative engineering can overcome significant technical constraints. Our dynamic roll 

adjustment and parabolic mapping functions allowed a limited-DOF robot to perform writing tasks typically 

requiring more sophisticated hardware. These innovations showcase the potential for accessible robotics to 

address meaningful communication challenges. 

While current limitations restrict practical deployment in some scenarios, the foundation established by this 

project provides a clear pathway for future enhancements. The system not only serves as a potential assistive 

technology but also demonstrates valuable approaches for human-robot interaction and computer vision 

applications. By continuing to refine and expand this technology, we can further bridge communication gaps and 

create more inclusive environments for the deaf and hard-of-hearing community. 
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