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1. ABSTRACT

In an era marked by rapid advancements in
automotive technology, the quest for improving
road safety has become increasingly paramount.
Vehicle-to-vehicle (V2v) communication
emerges as a promising solution to mitigate
accidents and enhance overall road safety. This
project endeavours to explore the potential of
V2V simulations to bolster safety measures on
our roadways. Our implementation focuses on
leveraging  Reinforcement  Learning  (RL)
techniques to enhance road safety through
Vehicle-to-Vehicle  (V2V) simulations. RL
algorithms will be used to train virtual agents
within the simulations to make optimal decisions
in dynamic traffic environments. These agents
will utilize V2V communication to exchange
critical information such as vehicle positions and
intentions. The project will investigate the
effectiveness of RL-based decision-making in
preventing accidents and improving overall road
safety. The project will also address technical
aspects, including RL model development. By
combining RL and V2V simulations, this
implementation aims to create a realistic and
data-driven  approach to road safety
improvement. Ultimately, the project's findings
may pave the way for more intelligent and
adaptive vehicular systems, contributing to safer
roadways for all users.

2. INTRODUCTION

The complex web of traffic situations in today's
constantly changing transportation environment
makes it imperative that innovative methods be
used to guarantee road safety. In this context,
Vehicle-to-Vehicle (V2V) communication shows
great potential. With the ability to exchange
mission-critical information with ease, it ushers
in a new era of safety protocols and traffic
coordination.

Vehicle-to-vehicle (V2V) communication serves
as a conduit for the instantaneous exchange of
critical data between vehicles. This
communication includes a variety of data, from
the positions and speeds of the vehicles to
impending manoeuvres and possible dangers. It
establishes the groundwork for a dynamic,
networked system in which cars with relevant
data can cooperatively negotiate intricate traffic
situations.

This project goes beyond the integration of V2V
communication; it extends further by
amalgamating Reinforcement Learning (RL)
techniques within V2V simulations. RL, a branch
of artificial intelligence, endows these vehicles -
or rather, their virtual counterparts within
simulations - with the ability to learn from their
experiences. By training these intelligent agents
through simulated interactions, they evolve into
proactive decision-makers, equipped to adapt
and respond to dynamic traffic dynamics.

This convergence of RL in simulated
environments with V2V communication presents
a unique opportunity. It involves anticipating,
averting, and taking proactive measures to
address possible risks rather than merely
responding to events as they arise. These
sophisticated agents use real-time data exchange
to anticipate and reduce risks before they
materialise into hazards. They have been refined
through innumerable simulated scenarios.

The core essence of this project lies in leveraging
this potential of technology and simulation, to
craft a data-driven paradigm for enhancing road
safety. It's about creating a digital ecosystem
where vehicles aren't merely entities traversing
roads but active participants in a cooperative,
safety-centric network. It's about empowering
these virtual agents to make split-second,
informed decisions that ultimately culminate in
safer roads for all.



3. RELATED WORK

With the ability to use real-time communication
between vehicles to reduce possible risks and
improve overall traffic management, vehicle-to-
vehicle (V2V) communication is an innovative
development in road safety. Vehicles that are in
close proximity to one another exchange data,
including position, status, and speed, through
vehicle-to-vehicle (V2V) communication. Vehicles
can jointly make intelligent choices because of
this data exchange, which increases road safety.
The basic principle of the concept is that closely
spaced vehicles can exchange vital information
and react as a group to sudden and unpredictable
changes in the driving environment.

Deep Q-Learning (DQN) is an algorithm that
combines deep learning techniques with
reinforcement learning principles to solve
complex decision-making problems. In scenarios
where an agent tries to maximize a cumulative
reward over time, it was initially introduced as a
breakthrough in training artificial agents to make
sequential decisions.

Deep neural networks (DNNs) are used to
approximate the Q-function. Due to its ability to
handle high-dimensional state spaces, DQN is a
good fit for tasks that require raw sensory input
or images.

DQN uses a technique called experience replay.
DQN takes samples of random batches during
training, storing experiences in a replay buffer,
instead of learning from successive experiences.
DQN performs well in situations with high-
dimensional state spaces where normal
reinforcement learning techniques fails. It has
been used in fields like robotics and autonomous
system where agents need to make decisions
based on complex sensory input.

Applications of DQN in traffic management,

collision avoidance, or autonomous driving

a) Studies have been done in using DQN for
training of autonomous vehicles to make
decisions, plan trajectory, and avoiding
collisions making it safer and more efficient.

b) DQN is used in developing efficient traffic
signal systems that learn from real-time
traffic conditions to minimize congestion,

reduce travel time, and improve overall traffic
flow.

c) DQN has its application in optimizing
cooperative vehicle system, particularly in
platooning. Vehicles that travel closely in a
group to save fuel and reduce traffic flow are
said to be platooning. DQN helps in making
coordinated decisions for safe travel

d) DQN has been used in studies to optimize
navigation and route planning systems.
Vehicles can learn and adjust to changing
traffic patterns, road conditions, and
unforeseen events thanks to DQN-based
algorithms, making routes safer and more
effective.

e) Studies have been done on using DQN to
estimate and predict the probability of
collisions. DQN algorithms can analyse
complex interactions between vehicles,
pedestrians, and other obstacles to predict
potential collision scenarios and take
preventive action by learning from historical
and real-time data.

Related Research:

A Research has been done by Guangfei Xu, Bing
Chen, Guangxian Li & Xiangkun He on Connected
Autonomous Vehicle Platoon Control Through
Multi-Agent Deep Reinforcement Learning. This
paper addresses the problem of how to make the
whole convoy be high traffic efficient, safe,
energy and driving smoothness at the same time
when there are only proportionate connected
autonomous vehicles controlled by deep
reinforcement learning and the other vehicles
are human-driven vehicles in the convoy. And the
human-driven vehicles are driven by the
Intelligent Driver Model (IDM) which is set based
on rules in SUMO. This paper addresses the
challenges like how to determine a proper speed
to make the whole convoy be high traffic
efficient, safe and energy at the same time when
facing with dynamic environment. Research
considered PPO with entropy constraint to make
the results better.



Challenges in Current Research:

a) Creating simulation environments that
accurately represent the complex details of
actual traffic situations while taking weather,
a variety of road infrastructures, and
unforeseen events into account.

b) Creating methods that will allow algorithms
for reinforcement learning to generalize to
different driving scenarios, road
configurations, and traffic situations while
maintaining the durability and versatility of
the learned policies.

c) Developing models and tactics that take into
consideration the erratic behaviour of human
drivers to ensure secure and smooth
interactions between human-driven and
autonomous vehicles.

4. PROBLEM STATEMENT AND METHODOLOGY

4.1. Objective:

The primary objective of this simulation study is
to evaluate the impact and effectiveness of
Vehicle-to-Vehicle (V2V) communication in
improving traffic flow and safety within a
dynamic urban environment.

4.2. Challenges and Focus areas:

1. Traffic Flow Optimization: Investigate how V2V
communication can optimize traffic flow by
enabling cooperative behaviours among vehicles,
such as coordinated lane changes or merging.

2. Safety Enhancement: Analyse the role of V2V
communication in enhancing overall road safety
through collision avoidance, and cooperative
manoeuvring

3. Impact of Network Density: Explore the impact
of varying vehicle densities and network
congestion on the efficiency and reliability of the
V2V communication model.

4.3. Methodology:

1. Simulation Environment:

In the implementation of our V2V
communication system using SUMO, coupled
with the Traffic Control Interface (TraCl) Python
package, the interaction between the RL agent
and the simulation environment is orchestrated
with a focus on states and actions. TraCl serves as

a pivotal tool for the seamless exchange of
information and control commands between our
RL system and the SUMO simulation.

For states, TraCl facilitates the retrieval of crucial
information related to the ego vehicle and its
surroundings. The position, speed, acceleration,
direction, and lane information of the ego vehicle
are dynamically communicated to the RL agent,
providing a comprehensive understanding of its
current state. Additionally, TraCl enables the RL
agent to access the states of nearby vehicles,
ensuring that the model is well-informed about
the dynamic interactions within the traffic
environment.

Fig 1: SUMO environment

In terms of actions, TraCl plays a central role in
executing control commands within the SUMO
simulation. The RL agent issues commands such
as Accelerate, Decelerate, MaintainSpeed,
Changelane, and Turn through TraCl, influencing
the behaviour of the ego vehicle within the
simulated urban traffic.

2. V2V Model:

In our implementation of Vehicle-to-Vehicle
(V2V) communication using Reinforcement
Learning (RL), we leveraged a comprehensive set
of states to capture the dynamic environment of
the traffic scenario. The key states considered
include the position, speed, acceleration,
direction, and lane information of the ego
vehicle. These fundamental attributes provide a
nuanced representation of the ego vehicle's
behaviour within the traffic context. The position
serves as a spatial reference, speed denotes the
rate of movement, acceleration indicates
changes in speed, direction encapsulates the
heading of the vehicle, and lane details the
specific roadway path it occupies.



To enhance the contextual awareness of our RL
model, we also incorporated the states of nearby
vehicles. Recognizing that interactions with
surrounding vehicles play a crucial role in
decision-making, we included their respective
positions, speeds, accelerations, directions, and
lane information. This comprehensive set of
states enables the RL agent to understand the
dynamic relationships and potential collision risks
within the traffic environment. By considering
the states of nearby vehicles, our V2V
communication framework facilitates a more
responsive and adaptive decision-making process
for the ego vehicle, allowing it to navigate the
traffic scenario with increased safety and
efficiency. This multi-faceted approach to state
representation enables our RL model to learn and
adapt to complex traffic dynamics, contributing
to the overall effectiveness of the V2V
communication system.

3. Metrics and Evaluation:

The fundamental metric is the cumulative reward
obtained by the RL agent throughout an episode.
The reward function is designed to reflect the
system's objectives and priorities. Positive
rewards are assigned for desirable behaviours,
such as maintaining a safe following distance,
adhering to traffic rules, and successfully
executing lane changes. Conversely, negative
rewards are assigned for undesirable actions,
such as collisions or violations of traffic
regulations. The cumulative reward over an
episode provides a holistic measure of the
agent's ability to make effective decisions within
the simulated urban traffic environment.

Another straightforward yet critical metric
involves observing the simulation and monitoring
the occurrence of collisions. This metric serves as
a fundamental indicator of the system's safety
performance, reflecting the ability of the RL
agent to make decisions that prioritize collision
avoidance in the dynamic wurban traffic
environment.

4. Scenario Variation:

In our deliberate decision to introduce variability
in our scenarios, we stopped two vehicles on
each lane at random positions of the road. We

aimed to create a dynamic and unpredictable
urban road environment, emphasizing the RL
agent’s adaptability and responsiveness to
sudden changes.

The positioning of these stopped vehicles served
to challenge the RL agent by creating potential
points of interaction and obstacles in the flow.
This scenario prompted the agents to
dynamically adjust its decision-making strategies
to navigate around or interact with the halted
vehicles effectively.

4.4. Network:

The Deep Q network of our model has three
layers as depicted in fig 2 :

1. Input Layer

2. Hidden Layer

3. Output Layer

The neurons in the input layer depend on the
number of vehicles present in the simulation. In
our simulation, we have 14 vehicles with 6
parameters for each vehicle. Therefore, there are
84 neurons in the input layer. The input layer
performs RelLU activation function.

The hidden layer consists of 32 neurons. The
hidden layer performs RelLU activation as well.
The neurons in the output layer depend on the
number of actions that the agent can take. In our
model, there are five actions in the action space.
Therefore, there are 5 neurons in the output
layer.

Output Linear

Input Linear Hidden Linear
Layer

Layer Layer

STATES —> RELU - RELU —  Sigmoid  _y scrions

Activation Activation Activation

Fig 2 : Model Architecture



5. EXPERIMENTS AND RESULTS

5.1 Environment Setup

The experimentation phase commenced with the
development of a simulated environment
replicating real-world traffic scenarios. The
environment incorporated V2V communication
protocols, enabling vehicles to exchange crucial
information such as positions, speeds, and
intended manoeuvres. In this stage we included
setting up SUMO (Simulation of Urban Mobility)
as an environment for vehicle simulations to train
the model. SUMO is an open-source traffic
simulation software used for modelling and
analysing urban transportation systems and
vehicle behaviour in various traffic scenarios. In
this environment, SUMO was coupled with the
Traffic Control Interface (TraCl) Python package.

5.2 Network Setup

The V2V communication system implemented
with Reinforcement Learning (RL) involved a
comprehensive set of states capturing the
dynamics of the traffic scenario. The network
architecture utilized a Deep Q network with three
layers: an input layer, a hidden layer, and an
output layer. The scenario variations included
randomly positioned halted vehicles on each lane
to introduce dynamic challenges. The Deep Q-
Network (DQN) was trained to process incoming
V2V data and predict optimal actions for virtual
agents within the simulated environment.
Hyperparameters, including learning rates,
discount factors, and batch sizes, were fine-tuned
to optimize the training process.

5.3 Metrics and Evaluation

The DQN model underwent extensive training
iterations within the V2V simulation framework.
Experience replay mechanisms were employed,
leveraging past interactions to update the model
iteratively. The training aimed to equip the virtual
agents with the ability to make informed
decisions in dynamic traffic scenarios.

The primary metrics that were utilized to
evaluate the effectiveness of the V2V
communication system are the cumulative
reward obtained by the RL agent throughout
episodes, the occurrence of collisions within the

simulation and checking if the agents are
reaching the end state. The reward function
incentivized  desirable  behaviours  while
penalizing actions leading to collisions or halting.

Multiple scenarios were executed to analyse the
impact of V2V communication on traffic flow and
safety under varying conditions of network
density and congestion. Each scenario involved a
dynamic urban road environment with halted
vehicles placed at random positions, challenging
the adaptability of the RL agent.

5.4 Results Analysis

The trained DQN model showcased promising
outcomes. Across multiple simulation runs, the
RL-trained agents demonstrated a substantial
decrease in the occurrence of accidents
compared to baseline scenarios without RL
integration. This reduction, often by a significant
margin, highlighted the proactive decision-
making  capabilities  endowed by RL
methodologies.

In scenarios with varying network densities, the
implementation of V2V communication
showcased a noticeable improvement in traffic
flow optimization. The RL agent demonstrated
cooperative  behaviours among vehicles,
effectively executing lane changes and merging
manoeuvres, resulting in smoother traffic flow
patterns compared to scenarios without V2V
communication.

Fig 3 : Episode 1 of v2v simulations



Fig 4 : Episode 1 of v2v simulation in a different
run

Above fig.3 and fig. 4 depict how the vehicles
were colliding in the initial episode where the red
cars denote the collided vehicles.

Fig 5 : Vehicles rerouting in the later episodes
based on the environment

Fig 6: Vehicles stopping at a safe distance when
randomly positioned halted vehicles block the
road

The introduction of V2V communication
significantly contributed to safety enhancement
within the traffic environment. The RL agent
showcased proactive collision avoidance
strategies, reducing the frequency of collisions
compared to scenarios  without V2V
communication. Desirable behaviours, such as
maintaining safe following distances and
adhering to traffic rules, were consistently
exhibited by the RL agent as observed in fig 5 and
fig 6.
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Fig 7 : cross entropy loss over 500 episodes

Furthermore, the efficiency and adaptability of
RL-trained agents were evident in their ability to
dynamically respond to evolving scenarios. These
agents showcased agility in adapting to changing
traffic dynamics, showcasing the potential for
adaptable and intelligent vehicular systems. The
graph in fig 7 indicates how our RL algorithm loss
looks over 500 episodes.

The Deep Q network architecture demonstrated
efficient learning and decision-making
capabilities. The model exhibited robust
performance in adapting to varying traffic
scenarios, showcasing adaptive behaviours and
responsive actions based on the dynamic states
provided by the simulation environment.

6. DISCUSSION AND CONCLUSION

The evaluation of Vehicle-to-Vehicle (V2V)
communication using Reinforcement Learning
within a simulated urban environment has
demonstrated promising advancements in traffic
flow optimization and road safety. The
cooperative behaviours facilitated by V2V
communication, along with the adaptability of
the RL agent to dynamic scenarios, underscore
the potential of this framework in addressing
urban traffic challenges.



The observed enhancements in cumulative
rewards and collision reduction signify the
practical effectiveness of V2V communication
systems. However, several areas warrant further
research and development to advance the
application and effectiveness of these systems in
real-world settings.

6.1 Future Work

1. Integration of Pedestrians
Future research should focus on integrating
pedestrian mobile devices into the V2V
communication framework to enable safer
and more efficient navigation in mixed traffic
environments

2. Priority Vehicle Interaction
Expanding the V2V communication system to
incorporate protocols for giving way to
priority vehicles can enhance traffic flow and
emergency response systems.

3. Complex Road Networks
Scaling the V2V communication model to
handle intricate road structures, such as
intersections and diverse lane configurations,
is essential for improving traffic optimization
and safety measures.

6.2 Limitations and Challenges

1. Non-Autonomous Vehicle Integration
Addressing the interaction between
connected and non-connected vehicles poses
a challenge. Future research should focus on
handling scenarios involving both
autonomous and non-autonomous vehicles.

2. Data Privacy Concerns
Ensuring robust privacy-preserving
mechanisms and secure communication
protocols is crucial to address data privacy
concerns associated with V2v
communication systems.

3. Human Behaviour Considerations
Understanding and modelling human
behaviour in response to V2V-enabled
vehicles are vital aspects that require further
exploration to ensure effective deploymentin
real-world settings.

The study's outcomes emphasize the importance
of continued research and development in V2V
communication technologies. Addressing these

future works and limitations will pave the way for
more comprehensive, efficient, and safer
transportation systems.

7. TEAM CONTRIBUTIONS

The project synergized individual expertise:
Mukesh led DQN model development;
Ayaazuddin orchestrated the SUMO
environment; Divya integrated traCl and tuned
hyperparameters; Satvika collaborated on DQN
and formulated the reward system while the
documentation was worked upon by all the team
members. Each member's distinct contributions
coalesced, shaping a comprehensive framework
for simulating traffic dynamics, showcasing the
potency of collective skills in reinforcement
learning within urban environments.

8. LINK TO CODE REPOSITORY
The GitHub repository :
https://github.com/satvika-
eda/V2VSimulationsUsingSumo
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