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1. ABSTRACT 
In an era marked by rapid advancements in 
automo4ve technology, the quest for improving 
road safety has become increasingly paramount. 
Vehicle-to-vehicle (V2V) communica4on 
emerges as a promising solu4on to mi4gate 
accidents and enhance overall road safety. This 
project endeavours to explore the poten4al of 
V2V simula4ons to bolster safety measures on 
our roadways. Our implementa4on focuses on 
leveraging Reinforcement Learning (RL) 
techniques to enhance road safety through 
Vehicle-to-Vehicle (V2V) simula4ons. RL 
algorithms will be used to train virtual agents 
within the simula4ons to make op4mal decisions 
in dynamic traffic environments. These agents 
will u4lize V2V communica4on to exchange 
cri4cal informa4on such as vehicle posi4ons and 
inten4ons. The project will inves4gate the 
effec4veness of RL-based decision-making in 
preven4ng accidents and improving overall road 
safety. The project will also address technical 
aspects, including RL model development. By 
combining RL and V2V simula4ons, this 
implementa4on aims to create a realis4c and 
data-driven approach to road safety 
improvement. Ul4mately, the project's findings 
may pave the way for more intelligent and 
adap4ve vehicular systems, contribu4ng to safer 
roadways for all users.  
 
2. INTRODUCTION 
The complex web of traffic situa4ons in today's 
constantly changing transporta4on environment 
makes it impera4ve that innova4ve methods be 
used to guarantee road safety. In this context, 
Vehicle-to-Vehicle (V2V) communica4on shows 
great poten4al. With the ability to exchange 
mission-cri4cal informa4on with ease, it ushers 
in a new era of safety protocols and traffic 
coordina4on.  
 
 

Vehicle-to-vehicle (V2V) communica4on serves 
as a conduit for the instantaneous exchange of 
cri4cal data between vehicles. This 
communica4on includes a variety of data, from 
the posi4ons and speeds of the vehicles to 
impending manoeuvres and possible dangers. It 
establishes the groundwork for a dynamic, 
networked system in which cars with relevant 
data can coopera4vely nego4ate intricate traffic 
situa4ons. 
 
This project goes beyond the integra4on of V2V 
communica4on; it extends further by 
amalgama4ng Reinforcement Learning (RL) 
techniques within V2V simula4ons. RL, a branch 
of ar4ficial intelligence, endows these vehicles - 
or rather, their virtual counterparts within 
simula4ons - with the ability to learn from their 
experiences. By training these intelligent agents 
through simulated interac4ons, they evolve into 
proac4ve decision-makers, equipped to adapt 
and respond to dynamic traffic dynamics. 
 
This convergence of RL in simulated 
environments with V2V communica4on presents 
a unique opportunity. It involves an4cipa4ng, 
aver4ng, and taking proac4ve measures to 
address possible risks rather than merely 
responding to events as they arise. These 
sophis4cated agents use real-4me data exchange 
to an4cipate and reduce risks before they 
materialise into hazards. They have been refined 
through innumerable simulated scenarios.  
 
The core essence of this project lies in leveraging 
this poten4al of technology and simula4on, to 
craQ a data-driven paradigm for enhancing road 
safety. It's about crea4ng a digital ecosystem 
where vehicles aren't merely en44es traversing 
roads but ac4ve par4cipants in a coopera4ve, 
safety-centric network. It's about empowering 
these virtual agents to make split-second, 
informed decisions that ul4mately culminate in 
safer roads for all. 
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3. RELATED WORK 
With the ability to use real-4me communica4on 
between vehicles to reduce possible risks and 
improve overall traffic management, vehicle-to-
vehicle (V2V) communica4on is an innova4ve 
development in road safety. Vehicles that are in 
close proximity to one another exchange data, 
including posi4on, status, and speed, through 
vehicle-to-vehicle (V2V) communica4on. Vehicles 
can jointly make intelligent choices because of 
this data exchange, which increases road safety. 
The basic principle of the concept is that closely 
spaced vehicles can exchange vital informa4on 
and react as a group to sudden and unpredictable 
changes in the driving environment. 
 
Deep Q-Learning (DQN) is an algorithm that 
combines deep learning techniques with 
reinforcement learning principles to solve 
complex decision-making problems. In scenarios 
where an agent tries to maximize a cumula4ve 
reward over 4me, it was ini4ally introduced as a 
breakthrough in training ar4ficial agents to make 
sequen4al decisions. 
Deep neural networks (DNNs) are used to 
approximate the Q-func4on. Due to its ability to 
handle high-dimensional state spaces, DQN is a 
good fit for tasks that require raw sensory input 
or images. 
 
DQN uses a technique called experience replay. 
DQN takes samples of random batches during 
training, storing experiences in a replay buffer, 
instead of learning from successive experiences. 
DQN performs well in situa4ons with high-
dimensional state spaces where normal 
reinforcement learning techniques fails. It has 
been used in fields like robo4cs and autonomous 
system where agents need to make decisions 
based on complex sensory input. 
 
Applica4ons of DQN in traffic management, 
collision avoidance, or autonomous driving 
a) Studies have been done in using DQN for 

training of autonomous vehicles to make 
decisions, plan trajectory, and avoiding 
collisions making it safer and more efficient.  

b) DQN is used in developing efficient traffic 
signal systems that learn from real-4me 
traffic condi4ons to minimize conges4on, 

reduce travel 4me, and improve overall traffic 
flow. 

c) DQN has its applica4on in op4mizing 
coopera4ve vehicle system, par4cularly in 
platooning. Vehicles that travel closely in a 
group to save fuel and reduce traffic flow are 
said to be platooning. DQN helps in making 
coordinated decisions for safe travel 

d) DQN has been used in studies to op4mize 
naviga4on and route planning systems. 
Vehicles can learn and adjust to changing 
traffic paXerns, road condi4ons, and 
unforeseen events thanks to DQN-based 
algorithms, making routes safer and more 
effec4ve. 

e) Studies have been done on using DQN to 
es4mate and predict the probability of 
collisions. DQN algorithms can analyse 
complex interac4ons between vehicles, 
pedestrians, and other obstacles to predict 
poten4al collision scenarios and take 
preven4ve ac4on by learning from historical 
and real-4me data. 

 
Related Research: 
A Research has been done by Guangfei Xu, Bing 
Chen, Guangxian Li & Xiangkun He on Connected 
Autonomous Vehicle Platoon Control Through 
Mul4-Agent Deep Reinforcement Learning. This 
paper addresses the problem of how to make the 
whole convoy be high traffic efficient, safe, 
energy and driving smoothness at the same 4me 
when there are only propor4onate connected 
autonomous vehicles controlled by deep 
reinforcement learning and the other vehicles 
are human-driven vehicles in the convoy. And the 
human-driven vehicles are driven by the 
Intelligent Driver Model (IDM) which is set based 
on rules in SUMO. This paper addresses the 
challenges like how to determine a proper speed 
to make the whole convoy be high traffic 
efficient, safe and energy at the same 4me when 
facing with dynamic environment. Research 
considered PPO with entropy constraint to make 
the results beXer.  
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Challenges in Current Research: 
a) Crea4ng simula4on environments that 

accurately represent the complex details of 
actual traffic situa4ons while taking weather, 
a variety of road infrastructures, and 
unforeseen events into account. 

b) Crea4ng methods that will allow algorithms 
for reinforcement learning to generalize to 
different driving scenarios, road 
configura4ons, and traffic situa4ons while 
maintaining the durability and versa4lity of 
the learned policies. 

c) Developing models and tac4cs that take into 
considera4on the erra4c behaviour of human 
drivers to ensure secure and smooth 
interac4ons between human-driven and 
autonomous vehicles. 

 
4. PROBLEM STATEMENT AND METHODOLOGY 
 
4.1. ObjecGve:  
The primary objec4ve of this simula4on study is 
to evaluate the impact and effec4veness of 
Vehicle-to-Vehicle (V2V) communica4on in 
improving traffic flow and safety within a 
dynamic urban environment. 

 
4.2. Challenges and Focus areas: 
1. Traffic Flow Op4miza4on: Inves4gate how V2V 
communica4on can op4mize traffic flow by 
enabling coopera4ve behaviours among vehicles, 
such as coordinated lane changes or merging. 
2. Safety Enhancement: Analyse the role of V2V 
communica4on in enhancing overall road safety 
through collision avoidance, and coopera4ve 
manoeuvring 
3. Impact of Network Density: Explore the impact 
of varying vehicle densi4es and network 
conges4on on the efficiency and reliability of the 
V2V communica4on model. 
 
4.3. Methodology: 
1. SimulaGon Environment:  
In the implementa4on of our V2V 
communica4on system using SUMO, coupled 
with the Traffic Control Interface (TraCI) Python 
package, the interac4on between the RL agent 
and the simula4on environment is orchestrated 
with a focus on states and ac4ons. TraCI serves as 

a pivotal tool for the seamless exchange of 
informa4on and control commands between our 
RL system and the SUMO simula4on. 
 
For states, TraCI facilitates the retrieval of crucial 
informa4on related to the ego vehicle and its 
surroundings. The posi4on, speed, accelera4on, 
direc4on, and lane informa4on of the ego vehicle 
are dynamically communicated to the RL agent, 
providing a comprehensive understanding of its 
current state. Addi4onally, TraCI enables the RL 
agent to access the states of nearby vehicles, 
ensuring that the model is well-informed about 
the dynamic interac4ons within the traffic 
environment. 
 

 
 

Fig 1: SUMO environment 
 
 
In terms of ac4ons, TraCI plays a central role in 
execu4ng control commands within the SUMO 
simula4on. The RL agent issues commands such 
as Accelerate, Decelerate, MaintainSpeed, 
ChangeLane, and Turn through TraCI, influencing 
the behaviour of the ego vehicle within the 
simulated urban traffic. 

 
2. V2V Model:  
In our implementa4on of Vehicle-to-Vehicle 
(V2V) communica4on using Reinforcement 
Learning (RL), we leveraged a comprehensive set 
of states to capture the dynamic environment of 
the traffic scenario. The key states considered 
include the posi4on, speed, accelera4on, 
direc4on, and lane informa4on of the ego 
vehicle. These fundamental aXributes provide a 
nuanced representa4on of the ego vehicle's 
behaviour within the traffic context. The posi4on 
serves as a spa4al reference, speed denotes the 
rate of movement, accelera4on indicates 
changes in speed, direc4on encapsulates the 
heading of the vehicle, and lane details the 
specific roadway path it occupies. 
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To enhance the contextual awareness of our RL 
model, we also incorporated the states of nearby 
vehicles. Recognizing that interac4ons with 
surrounding vehicles play a crucial role in 
decision-making, we included their respec4ve 
posi4ons, speeds, accelera4ons, direc4ons, and 
lane informa4on. This comprehensive set of 
states enables the RL agent to understand the 
dynamic rela4onships and poten4al collision risks 
within the traffic environment. By considering 
the states of nearby vehicles, our V2V 
communica4on framework facilitates a more 
responsive and adap4ve decision-making process 
for the ego vehicle, allowing it to navigate the 
traffic scenario with increased safety and 
efficiency. This mul4-faceted approach to state 
representa4on enables our RL model to learn and 
adapt to complex traffic dynamics, contribu4ng 
to the overall effec4veness of the V2V 
communica4on system. 

 
3. Metrics and EvaluaGon:  
The fundamental metric is the cumula4ve reward 
obtained by the RL agent throughout an episode. 
The reward func4on is designed to reflect the 
system's objec4ves and priori4es. Posi4ve 
rewards are assigned for desirable behaviours, 
such as maintaining a safe following distance, 
adhering to traffic rules, and successfully 
execu4ng lane changes. Conversely, nega4ve 
rewards are assigned for undesirable ac4ons, 
such as collisions or viola4ons of traffic 
regula4ons. The cumula4ve reward over an 
episode provides a holis4c measure of the 
agent's ability to make effec4ve decisions within 
the simulated urban traffic environment. 

 
Another straighforward yet cri4cal metric 
involves observing the simula4on and monitoring 
the occurrence of collisions. This metric serves as 
a fundamental indicator of the system's safety 
performance, reflec4ng the ability of the RL 
agent to make decisions that priori4ze collision 
avoidance in the dynamic urban traffic 
environment. 

 
4. Scenario VariaGon:  
In our deliberate decision to introduce variability 
in our scenarios, we stopped two vehicles on 
each lane at random posi4ons of the road. We 

aimed to create a dynamic and unpredictable 
urban road environment, emphasizing the RL 
agent’s adaptability and responsiveness to 
sudden changes.  

 
The posi4oning of these stopped vehicles served 
to challenge the RL agent by crea4ng poten4al 
points of interac4on and obstacles in the flow. 
This scenario prompted the agents to 
dynamically adjust its decision-making strategies 
to navigate around or interact with the halted 
vehicles effec4vely.  
 
4.4. Network: 
The Deep Q network of our model has three 
layers as depicted in fig 2 :  
1. Input Layer 
2. Hidden Layer 
3. Output Layer 
 
The neurons in the input layer depend on the 
number of vehicles present in the simula4on. In 
our simula4on, we have 14 vehicles with 6 
parameters for each vehicle. Therefore, there are 
84 neurons in the input layer. The input layer 
performs ReLU ac4va4on func4on.  

 
The hidden layer consists of 32 neurons. The 
hidden layer performs ReLU ac4va4on as well. 
The neurons in the output layer depend on the 
number of ac4ons that the agent can take. In our 
model, there are five ac4ons in the ac4on space. 
Therefore, there are 5 neurons in the output 
layer. 

 

 
Fig 2 : Model Architecture 
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5. EXPERIMENTS AND RESULTS 
 
5.1 Environment Setup 
The experimenta4on phase commenced with the 
development of a simulated environment 
replica4ng real-world traffic scenarios. The 
environment incorporated V2V communica4on 
protocols, enabling vehicles to exchange crucial 
informa4on such as posi4ons, speeds, and 
intended manoeuvres. In this stage we included 
sekng up SUMO (Simula4on of Urban Mobility) 
as an environment for vehicle simula4ons to train 
the model. SUMO is an open-source traffic 
simula4on soQware used for modelling and 
analysing urban transporta4on systems and 
vehicle behaviour in various traffic scenarios. In 
this environment, SUMO was coupled with the 
Traffic Control Interface (TraCI) Python package.  
 
5.2 Network Setup 
The V2V communica4on system implemented 
with Reinforcement Learning (RL) involved a 
comprehensive set of states capturing the 
dynamics of the traffic scenario. The network 
architecture u4lized a Deep Q network with three 
layers: an input layer, a hidden layer, and an 
output layer. The scenario varia4ons included 
randomly posi4oned halted vehicles on each lane 
to introduce dynamic challenges. The Deep Q-
Network (DQN) was trained to process incoming 
V2V data and predict op4mal ac4ons for virtual 
agents within the simulated environment. 
Hyperparameters, including learning rates, 
discount factors, and batch sizes, were fine-tuned 
to op4mize the training process. 
 
5.3 Metrics and EvaluaGon 
The DQN model underwent extensive training 
itera4ons within the V2V simula4on framework. 
Experience replay mechanisms were employed, 
leveraging past interac4ons to update the model 
itera4vely. The training aimed to equip the virtual 
agents with the ability to make informed 
decisions in dynamic traffic scenarios. 
 
The primary metrics that were u4lized to 
evaluate the effec4veness of the V2V 
communica4on system are the cumula4ve 
reward obtained by the RL agent throughout 
episodes, the occurrence of collisions within the 

simula4on and checking if the agents are 
reaching the end state. The reward func4on 
incen4vized desirable behaviours while 
penalizing ac4ons leading to collisions or hal4ng. 
 
Mul4ple scenarios were executed to analyse the 
impact of V2V communica4on on traffic flow and 
safety under varying condi4ons of network 
density and conges4on. Each scenario involved a 
dynamic urban road environment with halted 
vehicles placed at random posi4ons, challenging 
the adaptability of the RL agent. 
 
 
5.4 Results Analysis 
The trained DQN model showcased promising 
outcomes. Across mul4ple simula4on runs, the 
RL-trained agents demonstrated a substan4al 
decrease in the occurrence of accidents 
compared to baseline scenarios without RL 
integra4on. This reduc4on, oQen by a significant 
margin, highlighted the proac4ve decision-
making capabili4es endowed by RL 
methodologies. 
 
In scenarios with varying network densi4es, the 
implementa4on of V2V communica4on 
showcased a no4ceable improvement in traffic 
flow op4miza4on. The RL agent demonstrated 
coopera4ve behaviours among vehicles, 
effec4vely execu4ng lane changes and merging 
manoeuvres, resul4ng in smoother traffic flow 
paXerns compared to scenarios without V2V 
communica4on. 
 

 
Fig 3 : Episode 1 of v2v simula4ons 
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Fig 4 : Episode 1 of v2v simula4on in a different 

run 
 
Above fig.3 and fig. 4 depict how the vehicles 
were colliding in the ini4al episode where the red 
cars denote the collided vehicles.  
 
 

 
Fig 5 : Vehicles rerou4ng in the later episodes 

based on the environment 
 
 

 
Fig 6: Vehicles stopping at a safe distance when 
randomly posi4oned halted vehicles block the 

road 
 
The introduc4on of V2V communica4on 
significantly contributed to safety enhancement 
within the traffic environment. The RL agent 
showcased proac4ve collision avoidance 
strategies, reducing the frequency of collisions 
compared to scenarios without V2V 
communica4on. Desirable behaviours, such as 
maintaining safe following distances and 
adhering to traffic rules, were consistently 
exhibited by the RL agent as observed in fig 5 and 
fig 6.  

 
Fig 7 : cross entropy loss over 500 episodes 

 
 
Furthermore, the efficiency and adaptability of 
RL-trained agents were evident in their ability to 
dynamically respond to evolving scenarios. These 
agents showcased agility in adap4ng to changing 
traffic dynamics, showcasing the poten4al for 
adaptable and intelligent vehicular systems. The 
graph in fig 7 indicates how our RL algorithm loss 
looks over 500 episodes. 
 
The Deep Q network architecture demonstrated 
efficient learning and decision-making 
capabili4es. The model exhibited robust 
performance in adap4ng to varying traffic 
scenarios, showcasing adap4ve behaviours and 
responsive ac4ons based on the dynamic states 
provided by the simula4on environment. 
 
6. DISCUSSION AND CONCLUSION 
 
The evalua4on of Vehicle-to-Vehicle (V2V) 
communica4on using Reinforcement Learning 
within a simulated urban environment has 
demonstrated promising advancements in traffic 
flow op4miza4on and road safety. The 
coopera4ve behaviours facilitated by V2V 
communica4on, along with the adaptability of 
the RL agent to dynamic scenarios, underscore 
the poten4al of this framework in addressing 
urban traffic challenges. 
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The observed enhancements in cumula4ve 
rewards and collision reduc4on signify the 
prac4cal effec4veness of V2V communica4on 
systems. However, several areas warrant further 
research and development to advance the 
applica4on and effec4veness of these systems in 
real-world sekngs. 
 
6.1 Future Work 
1. Integra4on of Pedestrians 

Future research should focus on integra4ng 
pedestrian mobile devices into the V2V 
communica4on framework to enable safer 
and more efficient naviga4on in mixed traffic 
environments 

2. Priority Vehicle Interac4on 
Expanding the V2V communica4on system to 
incorporate protocols for giving way to 
priority vehicles can enhance traffic flow and 
emergency response systems. 

3. Complex Road Networks 
Scaling the V2V communica4on model to 
handle intricate road structures, such as 
intersec4ons and diverse lane configura4ons, 
is essen4al for improving traffic op4miza4on 
and safety measures. 

 
6.2 LimitaGons and Challenges 
1. Non-Autonomous Vehicle Integra4on 

Addressing the interac4on between 
connected and non-connected vehicles poses 
a challenge. Future research should focus on 
handling scenarios involving both 
autonomous and non-autonomous vehicles. 

2. Data Privacy Concerns 
Ensuring robust privacy-preserving 
mechanisms and secure communica4on 
protocols is crucial to address data privacy 
concerns associated with V2V 
communica4on systems. 

3. Human Behaviour Considera4ons 
Understanding and modelling human 
behaviour in response to V2V-enabled 
vehicles are vital aspects that require further 
explora4on to ensure effec4ve deployment in 
real-world sekngs. 

 
The study's outcomes emphasize the importance 
of con4nued research and development in V2V 
communica4on technologies. Addressing these 

future works and limita4ons will pave the way for 
more comprehensive, efficient, and safer 
transporta4on systems. 
 
7. TEAM CONTRIBUTIONS 
The project synergized individual exper4se: 
Mukesh led DQN model development; 
Ayaazuddin orchestrated the SUMO 
environment; Divya integrated traCI and tuned 
hyperparameters; Satvika collaborated on DQN 
and formulated the reward system while the 
documenta4on was worked upon by all the team 
members. Each member's dis4nct contribu4ons 
coalesced, shaping a comprehensive framework 
for simula4ng traffic dynamics, showcasing the 
potency of collec4ve skills in reinforcement 
learning within urban environments. 
 
8. LINK TO CODE REPOSITORY 
The GitHub repository :  
hXps://github.com/satvika-
eda/V2VSimula4onsUsingSumo 
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