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1. ABSTRACT 
The project seeks to construct technology that 
will let users input text to generate web pages. 
This project makes use of advances in Natural 
Language Processing (NLP) and Web 
Development to create webpages easily. The 
project's main concepts and objecDves include 
creaDng aestheDcally pleasing web layouts, 
puFng strong natural language processing (NLP) 
algorithms into pracDce by reliably interpreDng 
user input, and efficiently organizing the 
generated content. By integraDng the elements 
of NLP and Web Development, the project aims 
to provide users with a seamless and intuiDve 
interface for sharing their ideas and stories 
online. It removes the need for complex coding, 
allowing users from a wide range of backgrounds 
to parDcipate in the creaDon of web pages. In 
conclusion, this project provides an 
approachable way to create webpages, 
addressing a criDcal need in the digital world. Its 
creaDve methodology, which makes use of NLP 
and Web Development techniques, holds the 
potenDal to completely transform the producDon 
and disseminaDon of web content.    
 
2. METHODOLOGY 
2.1. NLP Techniques: 
a) LoRA (Low-Rank AdaptaDon): It is an efficient 

fine-tuning technique for fine-tuning large 
language models. It trains small low-rank 
matrices instead of the enDre model, 
reducing computaDonal costs and memory 
requirements. LoRA achieved comparable 
performance to full fine-tuning while 
enabling efficient domain adaptaDon of the 
large language model to our specific HTML 
code generaDon task. 

b) Causal LM: We have used the approach of 
casual language modelling, a self-supervised 
model. The model is trained to predict the 
next token in a sequence based on the 
previous tokens, without considering any 
future tokens. By leveraging the learned 

paTerns and dependencies from large-scale 
pre-training on huge amount of code data, 
this became key factor in generaDng high 
quality and relevant code outputs. 

c) Byte-Pair Encoding (BPE) TokenizaDon: Code 
Llama uses the same BPE tokenizer as Llama 
2, which is effecDve for handling rare and out-
of-vocabulary words in code by breaking 
them down into smaller, meaningful sub 
word units. 

d) Padding and TruncaDon: Preprocessing 
technique used to handle variable-length 
sequences. Padding and truncaDon help 
ensure that all input sequences have the 
same length by either adding special tokens 
(padding) to shorter sequences or cuFng off 
(truncaDng) longer sequences to a desired 
maximum length. 

 

 
  Fig 1: Model Architecture 
 
3. EXPERIMENTAL SETUP INCLUDING 

HYPERPARAMETER CHOICES 
 

3.1. Data CollecFon: 
The first step of our project involved acquiring a 
dataset consisDng of 1.5 million URLs, each 
assigned with one of the 15 available categories. 
These URLs are then scraped using HTTP requests 
to get the HTML code of the webpages. This 
served as the iniDal step in our aTempt to collect 
the data, enabling us to retrieve web data of 
disDnct categories.  
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This collecDon of HTML data from diverse URLs 
representaDve of several different categories has 
laid the groundwork for our project. This enabled 
us to proceed with the subsequent phase - 
preprocessing. 
 
3.2. Preprocessing: 
In the data processing phase, we employed an 
HTML parser, namely BeauDfulSoup, to extract 
structured informaDon from the responses 
gathered from HTTP requests. To ensure the 
quality and relevance of the data, a filtering 
mechanism was implemented whereby 
webpages containing less than 10,000 characters 
were disregarded. This threshold was set to 
exclude pages with potenDally insufficient 
content or error messages such as "PAGE NOT 
FOUND," thereby providing meaningful 
informaDon in the data. 
 
Furthermore, as our project primarily focused on 
HTML and CSS, addiDonal preprocessing steps 
were conducted to refine the parsed responses. 
Specifically, JavaScript code, Meta tags, and 
comments from the extracted HTML content 
were removed. The decision to exclude JavaScript 
code aimed to isolate the structural and stylisDc 
aspects of webpages from dynamic behaviours 
and funcDonaliDes introduced through 
JavaScript. AddiDonally, eliminaDng Meta tags 
and comments helped streamline the data by 
reducing extraneous informaDon, ensuring that 
the data remained centred on core HTML 
structure and CSS styling elements. 
 
3.3. Prompt GeneraFon: 
In In accordance with the methodology outlined 
in secDon 2.1 of the project, each URL was 
associated with a specific category. To maintain 
ethical standards, webpages categorized as 
"Adult" were excluded during the web scraping 
process. Subsequently, to generate prompts for 
our task, we adhered to a standardized format. 
This format involved creaDng prompts structured 
as follows: "Create a {Category} web page for 
{Dtle}."  For instance, an example prompt 
generated using this format could be:  "Create a 
Health website for Dalmane (Flurazepam): Side 
Effects, Uses, Dosage."  

  
By employing this format for prompt generaDon, 
each prompt accurately reflected the category 
and HTML content of the associated webpage. 
These prompts were then saved in JSON format 
for fine tuning the LLM’s. UlDmately, this 
approach yielded approximately 100,000 
prompts, each paired with its corresponding 
HTML, forming a comprehensive dataset for fine-
tuning.   
 
3.4. Model Fine-tuning: 

GPT-2:  
The pre-trained GPT-2 tokenizer (GPT2Tokenizer) 
and model (GPT2LMHeadModel) are imported 
from the Hugging Face Transformers library. The 
dataset was loaded and batched using a custom 
HTML Dataset class and a DataLoader object. We 
have used the collate_fn method, a custom 
funcDon used by PyTorch's DataLoader to collate 
a batch of data samples into a format suitable for 
the model. 
During training, the model is supposed to 
generate HTML code from natural language 
prompts by minimizing the loss between the 
model's predicDons and the target HTML 
outputs. We have defined a AdamW opDmizer 
with a learning rate of 0.01 to update the model 
parameters during training to improve 
convergence and generalizaDon. The total 
number of training steps was calculated by 
mulDplying the length of the dataloader (number 
of batches) by the number of epochs. By saving 
the fine-tuned model and the enDre model 
object, you can use the trained model for 
inference or conDnue training from the saved 
checkpoint. 
 
Falcon: 

Using the pretrained “falcon-7b-sharded-bf16" 
from Hugging Face and opDmized the efficiency 
through 8-bit quanDzaDon. Loaded a tokenizer 
from Falcon which converts text into tokens and 
adds padding. 

JSON files containing training and tesDng data are 
loaded and split, with relevant data formaTed 
into DatasetDict for efficient handling. The 
training process itself is orchestrated using the 
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“SFTTrainer” class, which is designed for 
sequence-to-sequence models. This class uDlizes 
TrainingArguments to define detailed training 
parameters like batch size, learning rate, 
opDmizer seFngs, and a learning rate schedule. 
The model is configured to use LoRA (Low-Rank 
AdaptaDon) to modify only certain layers of the 
model efficiently, which is especially useful for 
adapDng large pre-trained models to new tasks 
with minimal computaDonal overhead. Finally, 
the training process includes callbacks for early 
stopping to prevent overfiFng and a detailed 
setup for handling various data and model 
configuraDons during the training iteraDons.  
Amer training, the model is saved along with its 
tokenizer. It is re-trained over various batches of 
datasets to generate HTML based on new 
prompts. 
 
Llama-2: 

The fine-tuning process involved iniDalizing the 
“llama-2-7b-hf" model, which is available in the 
Hugging Face, with pre-trained weights and fine-
tuning it on the curated dataset. We have uDlized 
the LoRA configuraDon to reduce the number of 
training parameters.  
SFTTrainer, a specialized trainer for structured 
data generaDon tasks, was uDlized to streamline 
the fine-tuning process. The fine-tuning process 
employed a Causal Language Model (LM) setup, 
where the model predicts the next token in a 
sequence based only on the preceding tokens. 
The fine-tuning procedure uDlized the Adam 
opDmizer, a popular choice for fine-tuning Large 
Language models. 
Amer fine tuning, the model was able to generate 
some markup, but the code cannot be rendered 
as an HTML webpage. 
 
Code Llama: 

Using the pretrained “codellama/CodeLlama-7b-
hf" from Hugging Face and opDmized the 
efficiency through 8-bit quanDzaDon. Loaded a 
tokenizer from Code Llama which converts text 
into tokens and adds padding.  

Before the actual training begins, the model is 
configured with LoRA, a technique that adds 
trainable low-rank matrices to modify specific 

weights in the model's layers. We use “Trainer” 
object from the Hugging Face to orchestrate the 
training process by managing batch size, gradient 
accumulaDon, learning rate etc. The Trainer starts 
the training process, which involves mulDple 
iteraDons over the training dataset.  Over various 
iteraDons, the model makes predicDons based on 
the input data, compares these predicDons to the 
actual data using Cross Entropy Loss funcDon, 
and updates its weights to reduce predicDon 
errors. 

Amer training, the model is saved along with its 
tokenizer. It is re-trained over various batches of 
datasets to generate HTML based on new 
prompts. 
 

3.5. Hyperparameter choices 

The following are the hyperparameters used for 
fine-tuning the model: 
1. Epochs: The training process was conducted 

over 3 epochs. 
2. Learning Rate: The learning rate was set to 

0.002.  
3. LoRA Alpha: The alpha value affects the 

strength of the regularizaDon applied during 
training. 

4. LoRA Dropout: A Dropout rate of 0.1 was 
uDlized for LoRA.  

5. LoRA Rank: The LoRA Rank parameter was set 
to 64. This parameter determines the rank of 
the approximaDon matrix used in LoRA 
regularizaDon. 

These hyperparameters were carefully selected 
based on experimentaDon to opDmize the fine-
tuning process of the LLM models. The values 
menDoned above strike a balance between 
model performance, training efficiency and 
computaDonal resources available. 
 
4. RESULTS 
IniDally, we fine-tuned the GPT2 model to train 
on our dataset but GPT2 is taking a lot of Dme to 
even train a small set of data from the enDre 
dataset. It is having a maximum sequence length 
of 1024, but the HTML in training data has more 
than 10000 characters. So, we had to chunk each 
training html code to the maximum length of 
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1024, making it difficult for the model to 
interpret the training data. 
 
The Falcon-7B-Sharded-BF16 failed to produce 
valid HTML code but it generated some text data 
for the given prompt. 
 

 
  Fig 2: Fine-tuned Falcon output 
 
We have fine-tuned the Llama2-7B-HF model for 
a set of datasets and was able to produce some 
text data along with the empty markup tags. 
 

  
Fig 3: Fine-tuned Llama-2 output 

 
Parallelly fine-tuning efforts led to the successful 
operaDon of CodeLlama-7B-HF, which effecDvely 
generated HTML tags and text properly. 
 

            Fig 4: Fine-tuned CodeLlama output 
 
Further training on the already trained model of 
CodeLlama, we were able to produce a complete 
staDc html page which can be rendered on the 
browser without extra unnecessary data in the 
HTML. 
 

Fig 5: Code generated by fine-tuned Code Llama model 
 

Fig 6: Web display of the code generated (code in fig 5) 
 
With further training, the model was able to 
generate a web page which is a gallery of 
photos. The model added random images to the 
web page i.e. generated the img tags efficiently. 

 
 Fig 7: Code generated by fine-tuned Code Llama model 

with HTML and CSS 
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Fig 8: Web display of the code generated (code in fig 7) 
 

Below are the results for the training loss on the 
final fine-tuned code llama model. 

 

Fig 9: Training loss of fine-tuned Code Llama 

Below are the results for the validaDon loss on 
the final fine-tuned Code Llama model. 

Fig 10: ValidaOon loss of fine-tuned Code Llama 

 
 

5. CONCLUSION 
 
Fine tuning the models based on generic LLM’s 
that are not specific to code generaDon have 
produced intermediary results. On the other 
hand, fine tuning CodeLlama has given opDmal 
results over all other LLM’s with generaDon of 
both HTML and CSS along with images with less 
training and validaDon loss. With larger datasets, 
we would be able to produce more aestheDcally 
pleasing webpages that are dynamic in nature.  
 
There were a couple of limitaDons observed such 
as the availability of computaDonal resources 
which posed a substanDal constraint, influencing 
both the complexity and scale of the project. The 
content generated by the model can face 
potenDal copyright infringement concerns, 
necessitaDng careful aTenDon to the sourcing of 
materials.  
 
5.1. Future Focus 
There are several opportuniDes for improvement 
in future coursework.  
- Addressing the addiDon of JavaScript 

funcDonality would enhance the project's 
usefulness and user engagement.  

- Enabling mulD-webpage generaDon would 
expand the project's capabiliDes and allow for 
the creaDon of more extensive websites with 
interconnected content.  

In conclusion, while the project encountered 
several limitaDons, there are many opportuniDes 
for growth and improvement in future 
coursework. By addressing these limitaDons and 
focusing on enhancing funcDonality, design, and 
usability, future projects can strive to deliver 
more compelling and impacpul web experiences. 
 
6. GITHUB REPOSITORY 
GitHub: hTps://github.com/satvika-
eda/WebsiteGeneraDonNLP.git 
 
7. TEAM CONTRIBUTIONS 
The team collecDvely managed dataset 
exploraDon, acquisiDon, and preprocessing. 
Individual contribuDons include:  
- Sayam Khatri: Fine-tuning and training of the 

Falcon model.  
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- Divya Sri Bandaru: Fine-tuning and training of 
the GPT2 model.  

- Mukesh Javvaji: Fine-tuning and training of 
the Llama2 model.  

- Satvika Eda: Fine-tuning and training of the 
Code-LLama model. 
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