
WEBCRAFT : WHERE WORDS CREATE WEBPAGES

Mukesh Javvaji
Sayam Khatri

Divya Sri Bandaru
Satvika Eda

1. ABSTRACT
The project seeks to construct technology that
will let users input text to generate web pages.
This project makes use of advances in Natural
Language Processing (NLP) and Web
Development to create webpages easily. The
project's main concepts and objecDves include
creaDng aestheDcally pleasing web layouts,
puFng strong natural language processing (NLP)
algorithms into pracDce by reliably interpreDng
user input, and efficiently organizing the
generated content. By integraDng the elements
of NLP and Web Development, the project aims
to provide users with a seamless and intuiDve
interface for sharing their ideas and stories
online. It removes the need for complex coding,
allowing users from a wide range of backgrounds
to parDcipate in the creaDon of web pages. In
conclusion, this project provides an
approachable way to create webpages,
addressing a criDcal need in the digital world. Its
creaDve methodology, which makes use of NLP
and Web Development techniques, holds the
potenDal to completely transform the producDon
and disseminaDon of web content.

2. METHODOLOGY
2.1. NLP Techniques:
a) LoRA (Low-Rank AdaptaDon): It is an efficient

fine-tuning technique for fine-tuning large
language models. It trains small low-rank
matrices instead of the enDre model,
reducing computaDonal costs and memory
requirements. LoRA achieved comparable
performance to full fine-tuning while
enabling efficient domain adaptaDon of the
large language model to our specific HTML
code generaDon task.

b) Causal LM: We have used the approach of
casual language modelling, a self-supervised
model. The model is trained to predict the
next token in a sequence based on the
previous tokens, without considering any
future tokens. By leveraging the learned

paTerns and dependencies from large-scale
pre-training on huge amount of code data,
this became key factor in generaDng high
quality and relevant code outputs.

c) Byte-Pair Encoding (BPE) TokenizaDon: Code
Llama uses the same BPE tokenizer as Llama
2, which is effecDve for handling rare and out-
of-vocabulary words in code by breaking
them down into smaller, meaningful sub
word units.

d) Padding and TruncaDon: Preprocessing
technique used to handle variable-length
sequences. Padding and truncaDon help
ensure that all input sequences have the
same length by either adding special tokens
(padding) to shorter sequences or cuFng off
(truncaDng) longer sequences to a desired
maximum length.

 Fig 1: Model Architecture

3. EXPERIMENTAL SETUP INCLUDING

HYPERPARAMETER CHOICES

3.1. Data CollecFon:
The first step of our project involved acquiring a
dataset consisDng of 1.5 million URLs, each
assigned with one of the 15 available categories.
These URLs are then scraped using HTTP requests
to get the HTML code of the webpages. This
served as the iniDal step in our aTempt to collect
the data, enabling us to retrieve web data of
disDnct categories.

2

This collecDon of HTML data from diverse URLs
representaDve of several different categories has
laid the groundwork for our project. This enabled
us to proceed with the subsequent phase -
preprocessing.

3.2. Preprocessing:
In the data processing phase, we employed an
HTML parser, namely BeauDfulSoup, to extract
structured informaDon from the responses
gathered from HTTP requests. To ensure the
quality and relevance of the data, a filtering
mechanism was implemented whereby
webpages containing less than 10,000 characters
were disregarded. This threshold was set to
exclude pages with potenDally insufficient
content or error messages such as "PAGE NOT
FOUND," thereby providing meaningful
informaDon in the data.

Furthermore, as our project primarily focused on
HTML and CSS, addiDonal preprocessing steps
were conducted to refine the parsed responses.
Specifically, JavaScript code, Meta tags, and
comments from the extracted HTML content
were removed. The decision to exclude JavaScript
code aimed to isolate the structural and stylisDc
aspects of webpages from dynamic behaviours
and funcDonaliDes introduced through
JavaScript. AddiDonally, eliminaDng Meta tags
and comments helped streamline the data by
reducing extraneous informaDon, ensuring that
the data remained centred on core HTML
structure and CSS styling elements.

3.3. Prompt GeneraFon:
In In accordance with the methodology outlined
in secDon 2.1 of the project, each URL was
associated with a specific category. To maintain
ethical standards, webpages categorized as
"Adult" were excluded during the web scraping
process. Subsequently, to generate prompts for
our task, we adhered to a standardized format.
This format involved creaDng prompts structured
as follows: "Create a {Category} web page for
{Dtle}." For instance, an example prompt
generated using this format could be: "Create a
Health website for Dalmane (Flurazepam): Side
Effects, Uses, Dosage."

By employing this format for prompt generaDon,
each prompt accurately reflected the category
and HTML content of the associated webpage.
These prompts were then saved in JSON format
for fine tuning the LLM’s. UlDmately, this
approach yielded approximately 100,000
prompts, each paired with its corresponding
HTML, forming a comprehensive dataset for fine-
tuning.

3.4. Model Fine-tuning:

GPT-2:
The pre-trained GPT-2 tokenizer (GPT2Tokenizer)
and model (GPT2LMHeadModel) are imported
from the Hugging Face Transformers library. The
dataset was loaded and batched using a custom
HTML Dataset class and a DataLoader object. We
have used the collate_fn method, a custom
funcDon used by PyTorch's DataLoader to collate
a batch of data samples into a format suitable for
the model.
During training, the model is supposed to
generate HTML code from natural language
prompts by minimizing the loss between the
model's predicDons and the target HTML
outputs. We have defined a AdamW opDmizer
with a learning rate of 0.01 to update the model
parameters during training to improve
convergence and generalizaDon. The total
number of training steps was calculated by
mulDplying the length of the dataloader (number
of batches) by the number of epochs. By saving
the fine-tuned model and the enDre model
object, you can use the trained model for
inference or conDnue training from the saved
checkpoint.

Falcon:

Using the pretrained “falcon-7b-sharded-bf16"
from Hugging Face and opDmized the efficiency
through 8-bit quanDzaDon. Loaded a tokenizer
from Falcon which converts text into tokens and
adds padding.

JSON files containing training and tesDng data are
loaded and split, with relevant data formaTed
into DatasetDict for efficient handling. The
training process itself is orchestrated using the

3

“SFTTrainer” class, which is designed for
sequence-to-sequence models. This class uDlizes
TrainingArguments to define detailed training
parameters like batch size, learning rate,
opDmizer seFngs, and a learning rate schedule.
The model is configured to use LoRA (Low-Rank
AdaptaDon) to modify only certain layers of the
model efficiently, which is especially useful for
adapDng large pre-trained models to new tasks
with minimal computaDonal overhead. Finally,
the training process includes callbacks for early
stopping to prevent overfiFng and a detailed
setup for handling various data and model
configuraDons during the training iteraDons.
Amer training, the model is saved along with its
tokenizer. It is re-trained over various batches of
datasets to generate HTML based on new
prompts.

Llama-2:

The fine-tuning process involved iniDalizing the
“llama-2-7b-hf" model, which is available in the
Hugging Face, with pre-trained weights and fine-
tuning it on the curated dataset. We have uDlized
the LoRA configuraDon to reduce the number of
training parameters.
SFTTrainer, a specialized trainer for structured
data generaDon tasks, was uDlized to streamline
the fine-tuning process. The fine-tuning process
employed a Causal Language Model (LM) setup,
where the model predicts the next token in a
sequence based only on the preceding tokens.
The fine-tuning procedure uDlized the Adam
opDmizer, a popular choice for fine-tuning Large
Language models.
Amer fine tuning, the model was able to generate
some markup, but the code cannot be rendered
as an HTML webpage.

Code Llama:

Using the pretrained “codellama/CodeLlama-7b-
hf" from Hugging Face and opDmized the
efficiency through 8-bit quanDzaDon. Loaded a
tokenizer from Code Llama which converts text
into tokens and adds padding.

Before the actual training begins, the model is
configured with LoRA, a technique that adds
trainable low-rank matrices to modify specific

weights in the model's layers. We use “Trainer”
object from the Hugging Face to orchestrate the
training process by managing batch size, gradient
accumulaDon, learning rate etc. The Trainer starts
the training process, which involves mulDple
iteraDons over the training dataset. Over various
iteraDons, the model makes predicDons based on
the input data, compares these predicDons to the
actual data using Cross Entropy Loss funcDon,
and updates its weights to reduce predicDon
errors.

Amer training, the model is saved along with its
tokenizer. It is re-trained over various batches of
datasets to generate HTML based on new
prompts.

3.5. Hyperparameter choices

The following are the hyperparameters used for
fine-tuning the model:
1. Epochs: The training process was conducted

over 3 epochs.
2. Learning Rate: The learning rate was set to

0.002.
3. LoRA Alpha: The alpha value affects the

strength of the regularizaDon applied during
training.

4. LoRA Dropout: A Dropout rate of 0.1 was
uDlized for LoRA.

5. LoRA Rank: The LoRA Rank parameter was set
to 64. This parameter determines the rank of
the approximaDon matrix used in LoRA
regularizaDon.

These hyperparameters were carefully selected
based on experimentaDon to opDmize the fine-
tuning process of the LLM models. The values
menDoned above strike a balance between
model performance, training efficiency and
computaDonal resources available.

4. RESULTS
IniDally, we fine-tuned the GPT2 model to train
on our dataset but GPT2 is taking a lot of Dme to
even train a small set of data from the enDre
dataset. It is having a maximum sequence length
of 1024, but the HTML in training data has more
than 10000 characters. So, we had to chunk each
training html code to the maximum length of

4

1024, making it difficult for the model to
interpret the training data.

The Falcon-7B-Sharded-BF16 failed to produce
valid HTML code but it generated some text data
for the given prompt.

 Fig 2: Fine-tuned Falcon output

We have fine-tuned the Llama2-7B-HF model for
a set of datasets and was able to produce some
text data along with the empty markup tags.

Fig 3: Fine-tuned Llama-2 output

Parallelly fine-tuning efforts led to the successful
operaDon of CodeLlama-7B-HF, which effecDvely
generated HTML tags and text properly.

 Fig 4: Fine-tuned CodeLlama output

Further training on the already trained model of
CodeLlama, we were able to produce a complete
staDc html page which can be rendered on the
browser without extra unnecessary data in the
HTML.

Fig 5: Code generated by fine-tuned Code Llama model

Fig 6: Web display of the code generated (code in fig 5)

With further training, the model was able to
generate a web page which is a gallery of
photos. The model added random images to the
web page i.e. generated the img tags efficiently.

 Fig 7: Code generated by fine-tuned Code Llama model

with HTML and CSS

5

Fig 8: Web display of the code generated (code in fig 7)

Below are the results for the training loss on the
final fine-tuned code llama model.

Fig 9: Training loss of fine-tuned Code Llama

Below are the results for the validaDon loss on
the final fine-tuned Code Llama model.

Fig 10: ValidaOon loss of fine-tuned Code Llama

5. CONCLUSION

Fine tuning the models based on generic LLM’s
that are not specific to code generaDon have
produced intermediary results. On the other
hand, fine tuning CodeLlama has given opDmal
results over all other LLM’s with generaDon of
both HTML and CSS along with images with less
training and validaDon loss. With larger datasets,
we would be able to produce more aestheDcally
pleasing webpages that are dynamic in nature.

There were a couple of limitaDons observed such
as the availability of computaDonal resources
which posed a substanDal constraint, influencing
both the complexity and scale of the project. The
content generated by the model can face
potenDal copyright infringement concerns,
necessitaDng careful aTenDon to the sourcing of
materials.

5.1. Future Focus
There are several opportuniDes for improvement
in future coursework.
- Addressing the addiDon of JavaScript

funcDonality would enhance the project's
usefulness and user engagement.

- Enabling mulD-webpage generaDon would
expand the project's capabiliDes and allow for
the creaDon of more extensive websites with
interconnected content.

In conclusion, while the project encountered
several limitaDons, there are many opportuniDes
for growth and improvement in future
coursework. By addressing these limitaDons and
focusing on enhancing funcDonality, design, and
usability, future projects can strive to deliver
more compelling and impacpul web experiences.

6. GITHUB REPOSITORY
GitHub: hTps://github.com/satvika-
eda/WebsiteGeneraDonNLP.git

7. TEAM CONTRIBUTIONS
The team collecDvely managed dataset
exploraDon, acquisiDon, and preprocessing.
Individual contribuDons include:
- Sayam Khatri: Fine-tuning and training of the

Falcon model.

6

- Divya Sri Bandaru: Fine-tuning and training of
the GPT2 model.

- Mukesh Javvaji: Fine-tuning and training of
the Llama2 model.

- Satvika Eda: Fine-tuning and training of the
Code-LLama model.

8. REFERENCES

i. Calò, T. and De Russis, L., 2023, May.
Leveraging Large Language Models for
End-User Website GeneraDon. In
Interna'onal Symposium on End User
Development (pp. 52-61). Cham: Springer
Nature Switzerland.

ii. PyTorch. (n.d.). torch.nn.Transformer.
PyTorch DocumentaDon. Retrieved from
hTps://pytorch.org/docs/stable/generat
ed/torch.nn.Transformer.html

iii. Hugging Face. (n.d.). Som Trainers for TRL.
Hugging Face DocumentaDon. Retrieved
from
hTps://huggingface.co/docs/trl/v0.4.7/e
n/sm_trainer

iv. Hugging Face. (n.d.). Posterior EsDmaDon
for Fine-Tuning. Hugging Face
DocumentaDon. Retrieved from
hTps://huggingface.co/docs/pem/en/ind
ex

v. Hugging Face. (n.d.). QuanDzaDon.
Hugging Face DocumentaDon. Retrieved
from
hTps://huggingface.co/docs/accelerate/
en/usage_guides/quanDzaDon

vi. Hugging Face. (n.d.). LoRA. Hugging Face
DocumentaDon. Retrieved from
hTps://huggingface.co/docs/pem/en/pac
kage_reference/lora

vii. Hugging Face. (2020, July 6). GPT2.
Hugging Face Transformers
DocumentaDon. Retrieved from
hTps://huggingface.co/transformers/v3.
0.2/model_doc/gpt2.html

