WEBCRAFT : WHERE WORDS CREATE WEBPAGES

Mukesh Javvaji
Sayam Khatri
Divya Sri Bandaru
Satvika Eda

1. ABSTRACT

The project seeks to construct technology that
will let users input text to generate web pages.
This project makes use of advances in Natural
Language Processing (NLP) and Web
Development to create webpages easily. The
project's main concepts and objectives include
creating aesthetically pleasing web layouts,
putting strong natural language processing (NLP)
algorithms into practice by reliably interpreting
user input, and efficiently organizing the
generated content. By integrating the elements
of NLP and Web Development, the project aims
to provide users with a seamless and intuitive
interface for sharing their ideas and stories
online. It removes the need for complex coding,
allowing users from a wide range of backgrounds
to participate in the creation of web pages. In
conclusion, this project provides an
approachable way to create webpages,
addressing a critical need in the digital world. Its
creative methodology, which makes use of NLP
and Web Development techniques, holds the
potential to completely transform the production
and dissemination of web content.

2. METHODOLOGY

2.1. NLP Techniques:

a) LoRA (Low-Rank Adaptation): It is an efficient
fine-tuning technique for fine-tuning large
language models. It trains small low-rank
matrices instead of the entire model,
reducing computational costs and memory
requirements. LoRA achieved comparable
performance to full fine-tuning while
enabling efficient domain adaptation of the
large language model to our specific HTML
code generation task.

b) Causal LM: We have used the approach of
casual language modelling, a self-supervised
model. The model is trained to predict the
next token in a sequence based on the
previous tokens, without considering any
future tokens. By leveraging the learned

patterns and dependencies from large-scale
pre-training on huge amount of code data,
this became key factor in generating high
guality and relevant code outputs.

c) Byte-Pair Encoding (BPE) Tokenization: Code
Llama uses the same BPE tokenizer as Llama
2, which is effective for handling rare and out-
of-vocabulary words in code by breaking
them down into smaller, meaningful sub
word units.

d) Padding and Truncation: Preprocessing
technique used to handle variable-length
sequences. Padding and truncation help
ensure that all input sequences have the
same length by either adding special tokens
(padding) to shorter sequences or cutting off
(truncating) longer sequences to a desired
maximum length.

[
oz Pre-trained
—— CodeLlama-7b-hf

HTTP Request Response

Preprocessing
and Prompt JSON Data Fine Tuning
Generation

HTML Code

Fig 1: Model Architecture

3. EXPERIMENTAL SETUP
HYPERPARAMETER

INCLUDING
CHOICES

3.1. Data Collection:

The first step of our project involved acquiring a
dataset consisting of 1.5 million URLs, each
assigned with one of the 15 available categories.
These URLs are then scraped using HTTP requests
to get the HTML code of the webpages. This
served as the initial step in our attempt to collect
the data, enabling us to retrieve web data of
distinct categories.

This collection of HTML data from diverse URLs
representative of several different categories has
laid the groundwork for our project. This enabled
us to proceed with the subsequent phase -
preprocessing.

3.2. Preprocessing:

In the data processing phase, we employed an
HTML parser, namely BeautifulSoup, to extract
structured information from the responses
gathered from HTTP requests. To ensure the
quality and relevance of the data, a filtering
mechanism was implemented whereby
webpages containing less than 10,000 characters
were disregarded. This threshold was set to
exclude pages with potentially insufficient
content or error messages such as "PAGE NOT
FOUND," thereby providing meaningful
information in the data.

Furthermore, as our project primarily focused on
HTML and CSS, additional preprocessing steps
were conducted to refine the parsed responses.
Specifically, JavaScript code, Meta tags, and
comments from the extracted HTML content
were removed. The decision to exclude JavaScript
code aimed to isolate the structural and stylistic
aspects of webpages from dynamic behaviours
and functionalities introduced through
JavaScript. Additionally, eliminating Meta tags
and comments helped streamline the data by
reducing extraneous information, ensuring that
the data remained centred on core HTML
structure and CSS styling elements.

3.3. Prompt Generation:

In In accordance with the methodology outlined
in section 2.1 of the project, each URL was
associated with a specific category. To maintain
ethical standards, webpages categorized as
"Adult" were excluded during the web scraping
process. Subsequently, to generate prompts for
our task, we adhered to a standardized format.
This format involved creating prompts structured
as follows: "Create a {Category} web page for
{title}." For instance, an example prompt
generated using this format could be: "Create a
Health website for Dalmane (Flurazepam): Side
Effects, Uses, Dosage."

By employing this format for prompt generation,
each prompt accurately reflected the category
and HTML content of the associated webpage.
These prompts were then saved in JSON format
for fine tuning the LLM’s. Ultimately, this
approach vyielded approximately 100,000
prompts, each paired with its corresponding
HTML, forming a comprehensive dataset for fine-
tuning.

3.4. Model Fine-tuning:
GPT-2:

The pre-trained GPT-2 tokenizer (GPT2Tokenizer)
and model (GPT2LMHeadModel) are imported
from the Hugging Face Transformers library. The
dataset was loaded and batched using a custom
HTML Dataset class and a DataLoader object. We
have used the collate_fn method, a custom
function used by PyTorch's DatalLoader to collate
a batch of data samples into a format suitable for
the model.

During training, the model is supposed to
generate HTML code from natural language
prompts by minimizing the loss between the
model's predictions and the target HTML
outputs. We have defined a AdamW optimizer
with a learning rate of 0.01 to update the model
parameters during training to improve
convergence and generalization. The total
number of training steps was calculated by
multiplying the length of the dataloader (number
of batches) by the number of epochs. By saving
the fine-tuned model and the entire model
object, you can use the trained model for
inference or continue training from the saved
checkpoint.

Falcon:

Using the pretrained “falcon-7b-sharded-bf16"
from Hugging Face and optimized the efficiency
through 8-bit quantization. Loaded a tokenizer
from Falcon which converts text into tokens and
adds padding.

JSON files containing training and testing data are
loaded and split, with relevant data formatted
into DatasetDict for efficient handling. The
training process itself is orchestrated using the

2

“SFTTrainer” class, which is designed for
sequence-to-sequence models. This class utilizes
TrainingArguments to define detailed training
parameters like batch size, learning rate,
optimizer settings, and a learning rate schedule.
The model is configured to use LoRA (Low-Rank
Adaptation) to modify only certain layers of the
model efficiently, which is especially useful for
adapting large pre-trained models to new tasks
with minimal computational overhead. Finally,
the training process includes callbacks for early
stopping to prevent overfitting and a detailed
setup for handling various data and model
configurations during the training iterations.
After training, the model is saved along with its
tokenizer. It is re-trained over various batches of
datasets to generate HTML based on new
prompts.

Llama-2:

The fine-tuning process involved initializing the
“llama-2-7b-hf" model, which is available in the
Hugging Face, with pre-trained weights and fine-
tuning it on the curated dataset. We have utilized
the LoRA configuration to reduce the number of
training parameters.

SFTTrainer, a specialized trainer for structured
data generation tasks, was utilized to streamline
the fine-tuning process. The fine-tuning process
employed a Causal Language Model (LM) setup,
where the model predicts the next token in a
sequence based only on the preceding tokens.
The fine-tuning procedure utilized the Adam
optimizer, a popular choice for fine-tuning Large
Language models.

After fine tuning, the model was able to generate
some markup, but the code cannot be rendered
as an HTML webpage.

Code Llama:

Using the pretrained “codellama/Codellama-7b-
hf" from Hugging Face and optimized the
efficiency through 8-bit quantization. Loaded a
tokenizer from Code Llama which converts text
into tokens and adds padding.

Before the actual training begins, the model is
configured with LoRA, a technique that adds
trainable low-rank matrices to modify specific

weights in the model's layers. We use “Trainer”
object from the Hugging Face to orchestrate the
training process by managing batch size, gradient
accumulation, learning rate etc. The Trainer starts
the training process, which involves multiple
iterations over the training dataset. Over various
iterations, the model makes predictions based on
the input data, compares these predictions to the
actual data using Cross Entropy Loss function,
and updates its weights to reduce prediction
errors.

After training, the model is saved along with its
tokenizer. It is re-trained over various batches of
datasets to generate HTML based on new
prompts.

3.5. Hyperparameter choices

The following are the hyperparameters used for

fine-tuning the model:

1. Epochs: The training process was conducted
over 3 epochs.

2. Learning Rate: The learning rate was set to
0.002.

3. LoRA Alpha: The alpha value affects the
strength of the regularization applied during
training.

4. LoRA Dropout: A Dropout rate of 0.1 was
utilized for LoRA.

5. LoRA Rank: The LoRA Rank parameter was set
to 64. This parameter determines the rank of
the approximation matrix used in LoRA
regularization.

These hyperparameters were carefully selected
based on experimentation to optimize the fine-
tuning process of the LLM models. The values
mentioned above strike a balance between
model performance, training efficiency and
computational resources available.

4. RESULTS

Initially, we fine-tuned the GPT2 model to train
on our dataset but GPT2 is taking a lot of time to
even train a small set of data from the entire
dataset. It is having a maximum sequence length
of 1024, but the HTML in training data has more
than 10000 characters. So, we had to chunk each
training html code to the maximum length of

1024, making it difficult for the model to
interpret the training data.

The Falcon-7B-Sharded-BF16 failed to produce
valid HTML code but it generated some text data
for the given prompt.

ide eff
is available in generic form. Common side eff
is available in generic form. Common side eff
is available in gener:

. Common side eff

is available in ide eff

is available in ide eff
is available in ge
is available in ge
is available in ge
is available in
is available in ide eff
is available in ide eff

is available in generic form.

Fig 2: Fine-tuned

ommon side eff

output

We have fine-tuned the Llama2-7B-HF model for
a set of datasets and was able to produce some
text data along with the empty markup tags.

Input:
Create a health website for Self-Improvement strategies for mental health>

Response:

I<Create a health website for Self-Improvement strategies for mental health> >>>>>>>>>>5>5>>>>5>5>>
>y PP I iy MR >>>>>>====22%">55>

Fig 3: Fine-tuned Llama-2 output

Parallelly fine-tuning efforts led to the successful
operation of CodelLlama-7B-HF, which effectively
generated HTML tags and text properly.

##4# Input:
Create a Health website for Dalmane (Flurazepam): Side Effects, Uses, Dosage, Interactions, Warnings.

<title>Dalmane (Flurazepam)</title>

body {

font-family: sans-serif;
margin: 0;

padding: ©;

¥

h1 {
text-align: center;
¥

[
text-align: justify;
¥

</styles
</head>

<body>

<h1>Flurazepam (Dalmane)</h1>

<p-Side Effects: Anxiety, Insomnia, Nervousness, Restlessness, Sleep Disturbances, Somnolence.</p>

<p>Uses: Anxiety, Insomnia, Restlessness, Sleep Disturbances, Treatment-Resistant Anxiety.</p>

<p>Dosage: 2 mg once daily or 4 mg twice daily.</p>

<p-Interactions: May interact with other medicines, check the medicines compatibility list before starting the tr
eatment.</p>

s, d L dre . drowsy, Y, , drowsy, drowsy, drowsy, drowsy, . drow
sy, drowsy, drowsy, drowsy, drowsy, drowsy, drowsy, drowsy, drowsy, drowsy, drowsy, drowsy, drowsy, drowsy, drows
y, drowsy, drowsy, drowsy, drowsy, drowsy, drowsy, drowsy, drowsy, drowsy, drowsy, drowsy

Fig 4: Fine-tuned Codellama output

Further training on the already trained model of
Codellama, we were able to produce a complete
static html page which can be rendered on the
browser without extra unnecessary data in the
HTML.

Input:
Create a Health website for Self-Improvement Strategies for Mental Health.

Response:
<!DOCTYPE html>
<html>
<head>
<title>Health website for Self-Improvement Strategies for Mental Health</title>
</head>
<body>
<h1>Self-Improvement Strategies for Mental Health</h1>
<>
Explore Self-Improvement Strategies for Mental Health with our Health website.
Here, you can learn about:
</p>
<wul>
Meditation Technigues
Self-Hypnosis</1i>
<1i>Stress Management
<ful>
</body>
</html>

Fig 5: Code generated by fine-tuned Code Llama model

Self-Improvement Strategies for Mental Health

Explore Self-Improvement Strategies for Mental Health with our Health website. Here, you can leam about:

+ Meditation Techniques
o Self-Hypnosis
o Stress Management

Fig 6: Web display of the code generated (code in fig 5)

With further training, the model was able to
generate a web page which is a gallery of
photos. The model added random images to the
web page i.e. generated the img tags efficiently.

Input:
create a Recreation website for Zanzig.com Photo Hub — Photos From The Past

Response:

<IDOCTYPE html=>
<html>

<head=
<title>Zanzig.com Photo Hub — Photos From The Past</titlex
<style type='text/css"=>

body{

background—color: #FSF5FA;
>

.container{
max-width: 1200px;
margin: @ auto;
padding: 2@px;

¥

-header{

text-align: center;
margin-bottom: 20px;

-photo{

display: inline-block;
width: 30%;
margin-bottom: 2@0px;

img{
width: 100%;
height: auto;

b
</style=
</head>
<body=>
<div class='"container"=>
<div class="header">
<hl=Zanzig.com Photo Hub — Photos From The Past</hl>
<p>Browse through our selection of classic photos from the past.</p>
</div>

Fig 7: Code generated by fine-tuned Code Llama model
with HTML and CSS

Zanzig.com Photo Hub - Photos From The Past

X W
] A
= 1,.,: b.

'

ode generated‘(co;je in fig 7)

Below are the results for the training loss on the
final fine-tuned code llama model.

Training loss for fine tuning Code llama

121

101

o
®

o
=

Training Loss

o
>

0.2 1

0.0

50 100 150 200 250 300 350 400
Fig 9: Training loss of fine-tuned Code Llama

Below are the results for the validation loss on
the final fine-tuned Code Llama model.

Validation loss for fine tuning Code llama

1.0 1

e
@

Validation Loss
o
=

o
'S

0.2 1

50 100 150 200 250 300 350 400

Fig 10: Validation loss of fine-tuned Code Llama

5. CONCLUSION

Fine tuning the models based on generic LLM’s
that are not specific to code generation have
produced intermediary results. On the other
hand, fine tuning CodelLlama has given optimal
results over all other LLM’s with generation of
both HTML and CSS along with images with less
training and validation loss. With larger datasets,
we would be able to produce more aesthetically
pleasing webpages that are dynamic in nature.

There were a couple of limitations observed such
as the availability of computational resources
which posed a substantial constraint, influencing
both the complexity and scale of the project. The
content generated by the model can face
potential copyright infringement concerns,
necessitating careful attention to the sourcing of
materials.

5.1. Future Focus

There are several opportunities for improvement

in future coursework.

- Addressing the addition of JavaScript
functionality would enhance the project's
usefulness and user engagement.

- Enabling multi-webpage generation would
expand the project's capabilities and allow for
the creation of more extensive websites with
interconnected content.

In conclusion, while the project encountered

several limitations, there are many opportunities

for growth and improvement in future
coursework. By addressing these limitations and
focusing on enhancing functionality, design, and
usability, future projects can strive to deliver
more compelling and impactful web experiences.

6. GITHUB REPOSITORY
GitHub: https://github.com/satvika-
eda/WebsiteGenerationNLP.git

7. TEAM CONTRIBUTIONS

The team collectively managed dataset

exploration, acquisition, and preprocessing.

Individual contributions include:

- Sayam Khatri: Fine-tuning and training of the
Falcon model.

Vi.

Vii.

Divya Sri Bandaru: Fine-tuning and training of
the GPT2 model.

Mukesh Javvaji: Fine-tuning and training of
the Llama2 model.

Satvika Eda: Fine-tuning and training of the
Code-LLama model.

REFERENCES
Calo, T. and De Russis, L., 2023, May.
Leveraging Large Language Models for
End-User Website Generation. In
International Symposium on End User
Development (pp. 52-61). Cham: Springer
Nature Switzerland.
PyTorch. (n.d.). torch.nn.Transformer.
PyTorch Documentation. Retrieved from
https://pytorch.org/docs/stable/generat
ed/torch.nn.Transformer.html
Hugging Face. (n.d.). Soft Trainers for TRL.
Hugging Face Documentation. Retrieved
from
https://huggingface.co/docs/trl/v0.4.7 /e
n/sft_trainer
Hugging Face. (n.d.). Posterior Estimation
for Fine-Tuning. Hugging Face
Documentation. Retrieved from
https://huggingface.co/docs/peft/en/ind
ex
Hugging Face. (n.d.). Quantization.
Hugging Face Documentation. Retrieved
from
https://huggingface.co/docs/accelerate/
en/usage guides/quantization
Hugging Face. (n.d.). LoRA. Hugging Face
Documentation. Retrieved from
https://huggingface.co/docs/peft/en/pac
kage reference/lora
Hugging Face. (2020, July 6). GPT2.
Hugging Face Transformers
Documentation. Retrieved from
https://huggingface.co/transformers/v3.
0.2/model doc/gpt2.html

